www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Laurentreihe
Laurentreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurentreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:22 So 05.07.2009
Autor: Denny22

Aufgabe
Bestimme das Residuum im Punkt $0$ der Funktion

     [mm] $f(z)=\frac{z^3}{(z-1)(z^4+2)}$ [/mm]

Hallo an alle,

die Lösung dieser Aufgabe ist sehr einfach: Da $f$ im Punkt $0$ keinen Pol besitzt, ist das Residuum dort natürlich $0$. Ich möchte nun dieses Resultat zusätzlich mit der Laurentreihe überprüfen, bei der bekanntlich [mm] $a_{-1}=0$ [/mm] gelten muss.

Wie gehe ich aber bei der Laurententwicklung dieser Funktion vor? Zunächst Partialbruchzerlegung und anschließend alle 5 Terme mit der geometrischen Reihe umformen?

Danke und Gruß

        
Bezug
Laurentreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:07 Mo 06.07.2009
Autor: fred97


> Bestimme das Residuum im Punkt [mm]0[/mm] der Funktion
>  
> [mm]f(z)=\frac{z^3}{(z-1)(z^4+2)}[/mm]
>  Hallo an alle,
>  
> die Lösung dieser Aufgabe ist sehr einfach: Da [mm]f[/mm] im Punkt
> [mm]0[/mm] keinen Pol besitzt, ist das Residuum dort natürlich [mm]0[/mm].
> Ich möchte nun dieses Resultat zusätzlich mit der
> Laurentreihe überprüfen, bei der bekanntlich [mm]a_{-1}=0[/mm]
> gelten muss.
>  
> Wie gehe ich aber bei der Laurententwicklung dieser
> Funktion vor? Zunächst Partialbruchzerlegung und
> anschließend alle 5 Terme mit der geometrischen Reihe
> umformen?

Das kannst Du machen, aber wozu der Aufwand ? Es kommen eh nur Potenzreihen dabei heraus

FRED



>  
> Danke und Gruß


Bezug
                
Bezug
Laurentreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:51 Mo 06.07.2009
Autor: Denny22

Ich möchte den Studenten mit meinen Musterlösungen verschiedene Methoden an ein und derselben Aufgabe aufzeigen, mit denen sich die Residuen einer Funktion in einem bestimmten Punkt erfassen lassen. Nichts desto trotz hast Du bei diesem Beispiel absolut recht, wenn Du sagst, dass diese Vorgehensweise mit wesentlich mehr Aufwand verbunden ist.

Danke schon einmal.
Gruß Denny

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de