Laurentreihen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:22 Fr 14.01.2005 | Autor: | clauer |
Hallo,
klar ist mir wie man Laurentreihen für [mm] 1/(x^2+2x+4) [/mm] entwickelt, aber
wie entwickelt man Laurentreihen für sinus funktionen wie z.B. sin(1/z) oder (1-cos(z))/z. Mir ist klar das es irgend wie mit der potenzreihenentwiklung der exponentialfunktion laufen sollte.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Danke im Vorraus,
Chris
|
|
|
|
Hallo Chris,
ich bin mir nicht mehr 100%ig sicher, wie ich es damals angestellt habe...
...aber ich glaube, ich hatte mir mal überlegt: die Laurent-Reihe von f(x) ist ja nichts anderes als die Taylor-Reihe von f(1/x). Die Koeffizienten von [mm] x^k [/mm] und [mm] x^{-k} [/mm] werden ja vertauscht, wenn ich statt x als Argument der Funktion [mm] x^{-1} [/mm] verwende.
Die Laurent-Reihe von sin(1/z) ist also die Taylor Reihe von sin(z) mit der Besonderheit, dass aufgrund des Arguments 1/z eben nicht
z - 1/6 [mm] \cdot z^3 [/mm] + ... rauskommt, sondern
1/z - 1/6 [mm] \cdot (1/z)^3 [/mm] + ... ,d.h. [mm] z^{-1} [/mm] - 1/6 [mm] z^{-3} [/mm] + ...
Bei [mm] \frac{1}{x^2+1} [/mm] habe ich z.B. dann die Taylorreihe von [mm] \frac{1}{\frac{1}{x^2}+1} [/mm] = 1 - [mm] \frac{1}{x^2+1} [/mm] bestimmt, um die Laurent-Reihe zu bekommen.
Hugo
|
|
|
|