www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Lebesgue-Integral
Lebesgue-Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgue-Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:12 Do 22.07.2004
Autor: luck0r

Hallo,

ich verzweifel hier gerade an folgender Aufgabe, die mir noch zum Erhalt des Übungsscheines fehlt, vielleicht kann mir ja jemand weiterhelfen:

Es sei A [mm] \subseteq \IR^n [/mm], A L-messbar, f  [mm]\in[/mm] L(A) (also L-Integrierbar über A) und [mm] \lambda(A) > 0[/mm].
Beweisen Sie : Ist f > 0 auf A, so gilt:
[mm] \int_{A} f(x) dx > 0 [/mm]

[mm]\lambda(A)[/mm] ist das äußere Lebesgue-Maß

Vielen Dank an alle antwortenden und alle, die es zumindest duchlesen :)
luck0r
Ich habe diese Frage in keinem weiteren Forum gestellt

        
Bezug
Lebesgue-Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 09:57 Fr 23.07.2004
Autor: Gnometech

Gruss!

Also, vielleicht gebe ich einfach mal einige Fingerzeige...

Wenn Deine Funktion L-integrierbar ist, dann heisst das doch, dass man sie durch L-einfache (also Treppenfuntkionen) approximieren kann. Ihr muesstet ausserdem gezeigt haben, dass die Bedingung [mm] f > 0[/mm] es erlaubt, dies mit (strikt) positiven Funktionen zu tun. Das Integral ueber A von f ist dann definiert als der Grenzwert der Integrale dieser einfachen Funktionen.

Jetzt reicht es also, Dir zwei Dinge zu ueberlegen:

1) Das Ganze gilt fuer einfache Funktionen (da benutzt man die Additivitaet
des Masses), die strikt positiv sind.

2) Man kann die Folge monoton wachsend waehlen, so dass die Folge der Integrale ebenfalls monotn waechst - das ergibt dann eine monoton wachsende Folge positiver Zahlen (als Integralwerte der Integrale der einfachen Funktionen) und im Grenzwert steht dann ebenfalls etwas Positives.

Viel Erfolg!

Lars

Bezug
        
Bezug
Lebesgue-Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Fr 23.07.2004
Autor: Stefan

Hallo!

Es geht auch noch viel einfacher. ;-)

Würde nicht [mm] $\int\limits_A [/mm] f [mm] d\lambda [/mm] >0$ gelten, dann müsste wegen $f>0$ notwendigerweise [mm] $\int\limits_A [/mm] f [mm] d\lambda=0$ [/mm] gelten. Wäre aber [mm] $\int\limits_A [/mm] f [mm] d\lambda=0$, [/mm] dann wäre für alle $n [mm] \in \IN$ [/mm] auch (hierbei geht an der Stelle (*) entscheidend ein, dass $f$ auf $A$ positiv ist, denn sonst könnte man aus [mm] $\int\limits_A [/mm] f [mm] d\lambda=0$ [/mm] nicht (*) folgern!):

$0 [mm] \stackrel{(\*)}{=} \int\limits_{A \cap \{f \ge \frac{1}{n}\}} [/mm] f [mm] d\lambda \ge \frac{1}{n} \lambda(A \cap \{f \ge \frac{1}{n}\}) \ge [/mm] 0$.

Daraus folgt für alle $n [mm] \in \IN$: [/mm]

[mm] $\lambda(A \cap \{f \ge \frac{1}{n}\}) [/mm] =0$,

und daher (Stetigkeit des Maßes):

[mm] $\lambda(A) \stackrel{\mbox{\scriptsize (nach Vor.)}}{=} \lambda(A \cap \{f > 0\}) [/mm] = [mm] \lim\limits_{n \to \infty} \lambda(A \cap \{f \ge \frac{1}{n}\}) [/mm] =0$,

was einen Widerspruch zur Voraussetzung darstellt. Daher muss

[mm] $\int\limits_A [/mm] f [mm] d\lambda>0$ [/mm]

gelten.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de