www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Lebesgue-Integral
Lebesgue-Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgue-Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Do 09.09.2004
Autor: regine

Hallo,

man definiert den Vektorraum der Lebesgue-integrierbaren Funktionen f: [mm] \IR^{n} \to \IR [/mm] und verbietet dabei [mm] \pm \infty. [/mm]

Das bedeutet ja nun, das die Menge der lebesgue-integrierbaren Funktionen nur genau dann ein Vektorraum ist, wenn man nur mit beschränkten Funktionen arbeitet und somit f(x)=+ [mm] \infty [/mm] oder g(x)=- [mm] \infty [/mm] vermeidet.

Nun habe ich in einem Buch gelesen, daß keine Einschränkung entsteht, obwohl man eben den Bereich einschränkt und [mm] \pm \infty [/mm] verbietet.  Was genau soll mir dies sagen?

Danke und viele Grüße,
Regine.

        
Bezug
Lebesgue-Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Do 09.09.2004
Autor: Julius

Liebe Regine!

Ich verstehe jetzt dein Problem nicht, da du es ja selber erläutert hast (wenn auch nicht ganz korrekt).

Normalerweise wird die Lebesgue-Integrierbarkeit und das Lebesgue-Integral für sogenannte numerische Funktionen (so heißen sie jedenfalls im BAUER, de Gruyter-Verlag):

$f: [mm] \IR^d \to \overline{\IR}$ [/mm]

definiert, die bezüglich der auf [mm] $\overline{\IR}=\IR \cup \{-\infty,+\infty\}$ [/mm] definierten [mm] $\sigma$-Algebra [/mm] messbar sind.

Die Menge dieser Lebesgue-integrierbaren Funktionen bildet aber keinen Vektorraum, da für $g(x)=+ [mm] \infty$ [/mm] und [mm] $f(x)=-\infty$ [/mm] für mindestens ein $x [mm] \in \IR^d$ [/mm] eine Funktion $f+g$ nicht sinnvoll definiert werden kann, so dass alle Vektorraumaxiome gelten.

Das Problem besteht nicht mehr, wenn man die reellwertigen Lebesgue-integrierbaren Funktionen betrachtet (und nicht notwendigerweise, wie du schreibst, die beschränkten Funktionen). Die reellwertigen Lebesgue-integrierbaren Funktionen $f : [mm] \IR^d \to \IR$ [/mm] bilden einen Vektorraum, und die beschränkten Funktionen bilden einen Unterraum davon.

Alles klar?

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de