www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Lebesgue-Integral, Levi
Lebesgue-Integral, Levi < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgue-Integral, Levi: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 22:38 Fr 28.10.2005
Autor: Nimlothiel

Hallo!
Es gibt wieder einen neuen Mathebogen, der gelöst werden möchte. Allerdings schaff ich das nicht und brauche dringend Hilfe. Eigentlich dachte ich, ich würde Mathe verstehen, aber nun bin ich im dritten Semester und versteh nix... Also, hier sind die Aufgaben:
1. Es seien f,g : I  [mm] \to \IR [/mm] beliebige Funktionen. Beweisen Sie
max {f,g} = 1/2[(f+g) + [mm] (f-g)^{+} [/mm] + [mm] (g-f)^{+}]. [/mm]
2. Zeigen Sie f(x) = [mm] e^{-|x|} \in [/mm] L( [mm] \IR). [/mm]
3. Es sei ( [mm] $r_{n} [/mm] _{n [mm] \in \IN}$ [/mm] eine Aufzählung der rationalen Zahlen im Intervall I = [0,1]. Es sei
[mm]\phi(x)=\begin{cases} n, & \mbox{für } x \mbox{ = r_{n}} \\ 0, & \mbox{sonst } \mbox{} \end{cases}[/mm] .

Zeigen Sie phi  [mm] \in [/mm] L(I) und berechnen Sie  [mm] \integral_{I}^{} {\phi}. [/mm] Ist [mm] \phi [/mm] eine Levifunktion?
4. Es sei [mm] (\phi_{n}) [/mm] die Folge der stetigen, stückweise linearen Funktionen auf I = [0,1], die durch lineare Interpolation zwischen den Punkten  [mm] \phi_{n}(0)=0, \phi_{n}(1/n)=n, \phi_{n}(2/n)=0, \phi_{n}(1)=0 [/mm] entsteht. Zeigen Sie, dass diese Folge keine integrierbare Majorante ( also keine Funktion [mm] \Xi \in [/mm] L(I) mit | [mm] \phi_{n}| \le \Xi [/mm] für alle n  [mm] \in \IN) [/mm] besitzt kann.
5. Zeigen Sie, dass alle Intervalle der Form (a,b), (a,b], [a,b), [a,b] mit - [mm] \infty [/mm] < a  [mm] \le [/mm] b <  [mm] \infty [/mm] messbare Teilmengen von L( [mm] \IR) [/mm] sind.

Ich bin für jede Hilfe dankbar, auch für Buchtipps, in dem dieses Thema möglichst einfach erläutert wird.
Nimloth

        
Bezug
Lebesgue-Integral, Levi: Zur 4. Aufg.
Status: (Antwort) fertig Status 
Datum: 23:45 Fr 28.10.2005
Autor: leduart

Hallo Nim
das Integral über [mm] \Phi_{n} [/mm] ist 1 für alle n. Die Funktionen selbst konvergieren punktweise gegen 0. D.h. das Integral ist für lim n gegen unendlich 0. D.h. Grenzwert der Integrale  ungleich Integral des Grenzwerts. und damit ist die Beh. bewiesen. denn gäbe es ein Schranke, dann gälte obiges nicht.
Gruss leduart

Bezug
        
Bezug
Lebesgue-Integral, Levi: tach
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:54 Sa 29.10.2005
Autor: brain86

Hallo GEowissenschaftler 3. Semester der Uni Potsdam aus der Mathe Vorlesung Junek.
Hier ist ein weiterer Geowiss aus deinem Semester.  stell die fragen doch einfach einzeln und stell nicht alles rein.... das ist glaub ich produktiver.

Bezug
        
Bezug
Lebesgue-Integral, Levi: zu Aufgabe 3
Status: (Antwort) fertig Status 
Datum: 16:09 So 30.10.2005
Autor: Toellner

Hallo Nimloth,

die Aufgabe ist im Prinzip wie die, die Brain86 zur Dirichletfunktion stellt: Dort ist D auf allen rationalen Zahlen gleich 1, hier ist sie gleich n (wenn n die Nummer von [mm] q_n \in \IQ [/mm] ist).
Die Antwort ist dieselbe wie bei Brain86 (siehe weiter unten in der Postingliste): [mm] \IQ [/mm] ist eine (Ausnahme-) Menge vom Maß Null, ansonsten ist [mm] \phi [/mm] überall 0 und hat dieselbe Stammfunktion wie die Nullfunktion.

Grüße Richard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de