www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Lebesgue-Intergral von Maß=0
Lebesgue-Intergral von Maß=0 < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgue-Intergral von Maß=0: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:36 Di 03.06.2014
Autor: Chordale

Aufgabe
Sei Q ein Quader und f : Q [mm] \to \mathbb{R} [/mm] stetig mit [mm] \int [/mm] |f| dx = 0 . Zeigen Sie, dass f die Nullfunktion ist, d.h. f(x) = 0 für alle x [mm] \in [/mm] Q. |.| ist das Lebesgue Maß

Hallo liebe Matheraumler,

mir fehlt noch ein bisschen der Ansatz zu dieser Aufgabe.
Dadurch, dass |f| integrierbar ist folgt ja, dass es eine zugehörige [mm] L^1 [/mm] Cauchy-Folge von Treppenfunktionen [mm] (h_k) [/mm] gibt. Diese Folge von Treppenfunktionen muss ja dann gleichzeitig zugehörige Folge zur Nullfunktion sein. Wie setze ich jetzt aber die zugehörige Folge an von |f| an?
Schonmal vielen Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lebesgue-Intergral von Maß=0: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Di 03.06.2014
Autor: Gonozal_IX

Hiho,

die Aufgabe ist so eigentlich gar nicht so schwer. Nimm an, f sei nicht die Nullfunktion, dann existiert was?
Dann folgt aus der Stetigkeit von |f| was?

Und damit für das Integral?

Gruß,
Gono.

Bezug
                
Bezug
Lebesgue-Intergral von Maß=0: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:35 Di 03.06.2014
Autor: Chordale

Ahh okay also einfach so:
Angenommen f ist nicht die Nullfunktion:
[mm] \Rightarrow \exists [/mm] x [mm] \in [/mm] Q: f(x) [mm] \neq [/mm] 0 [mm] \Rightarrow [/mm] wegen der Stetigkeit von f gibt es keine isolierten Punkte [mm] \Rightarrow [/mm] |f| [mm] \neq [/mm] 0 [mm] \Rightarrow \int [/mm] |f| dx [mm] \neq [/mm] 0 [mm] \Rightarrow [/mm] Widerspruch [mm] \Rightarrow [/mm] Behauptung.

Reicht die Bedingung, dass es keine isolierten Pkt. geben kann schon für |f| [mm] \neq [/mm] 0 aus?
Danke schonmal :)

Bezug
                        
Bezug
Lebesgue-Intergral von Maß=0: Antwort
Status: (Antwort) fertig Status 
Datum: 06:33 Mi 04.06.2014
Autor: fred97


> Ahh okay also einfach so:
>  Angenommen f ist nicht die Nullfunktion:
>  [mm]\Rightarrow \exists[/mm] x [mm]\in[/mm] Q: f(x) [mm]\neq[/mm] 0 [mm]\Rightarrow[/mm] wegen
> der Stetigkeit von f gibt es keine isolierten Punkte



Hä ? Was willst Du damit sagen ????


> [mm]\Rightarrow[/mm] |f| [mm]\neq[/mm] 0 [mm]\Rightarrow \int[/mm] |f| dx [mm]\neq[/mm] 0
> [mm]\Rightarrow[/mm] Widerspruch [mm]\Rightarrow[/mm] Behauptung.


Nix folgt  !!!! Das ist doch kein Beweis



>  
> Reicht die Bedingung, dass es keine isolierten Pkt. geben
> kann


????


>  schon für |f| [mm]\neq[/mm] 0 aus?
>  Danke schonmal :)


Annahme: f ist nicht die Nullfunktion. Dann ex. ein [mm] x_0 \in [/mm] Q mit [mm] f(x_0) \ne [/mm] 0.

Da f stetig ist, gibt es eine Umgebung U von [mm] x_0 [/mm] und ein [mm] \alpha [/mm] > 0 mit


    |f(x)| [mm] \ge \alpha [/mm]   für alle x [mm] \in [/mm] Q [mm] \cap [/mm] U.

Jetzt Du.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de