www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Lebesgue-messbar
Lebesgue-messbar < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgue-messbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 Mo 23.11.2009
Autor: julsch

Aufgabe
(a) Zeigen Sie, dass [mm] \IQ \subset \IR [/mm] Lebesgue-messbar ist und berechnen Sie das Lebesguemaß von [mm] \IQ. [/mm]
(b) Zeigen Sie, dass die Borel-sigma-Algebra B = [mm] B(\IR^{n}) [/mm] von Würfeln mit rationalen Eckpunkten erzeugt wird.

Hallo!

Ich sitze gerade über Aufgabeteil (a) und habe mir gedacht, dass ich eigentlich zeigen müsste, dass die bzgl. des äußen Lebesguemaßes messbaren Mengen A [mm] \subset \IQ [/mm] eine Sigma-Algera bilden.

Dazu müsste ich ja erstmal, wenn ich es richtig verstanden habe alle messbaren Mengen bestimmen, d.h ich muss für das Lebesguemaß L zeigen:
Für alle E [mm] \subset \IQ [/mm] gilt L(E) = L(E [mm] \cap [/mm] A)+L(E \ A).
Jedoch habe ich Probleme dieses zu zeigen, wenn ich einfach nach der Definition des Lebesguemaßes gehe.

Kann mir jemand weiterhelfen?

Liebe Grüße und Danke schonmal Julsch

        
Bezug
Lebesgue-messbar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Mo 23.11.2009
Autor: Gonozal_IX

Hallo Julsch,

da [mm] \IQ [/mm] abzählbar ist, kannst du [mm] \IQ [/mm] wie darstellen?
Was weisst du dann über die Elemente?

MFG,
Gono.

Bezug
                
Bezug
Lebesgue-messbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Mo 23.11.2009
Autor: julsch

Hallo Gono!

[mm] \IQ [/mm] lässt sich dann darstellen als { [mm] \bruch{a}{b} [/mm] | a [mm] \in \IN [/mm] , b [mm] \in \IZ}. [/mm]

Für mich sieht es dann auch logisch aus, dass L(E) = L(E [mm] \cap [/mm] A) + L(E \ A) gilt, jedoch wie kann man es am besten aufschreiben?

Reicht es einfach zu schreiben:

L(E)
= L( (E [mm] \cap [/mm] A) [mm] \cup [/mm] (E \ A) )
=L(E [mm] \cap [/mm] A) + L(E \ A) wegen entweder disjunkten Mengen oder Liniarität von dem Lebesguemaß???

Gruß Julsch

Bezug
                        
Bezug
Lebesgue-messbar: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Mo 23.11.2009
Autor: Merle23

Hi, ich verstehe nicht was du machen willst.

Du sollst zeigen, dass [mm] \IQ [/mm] Lebesgue-messbar ist.

Dazu musst du dir erstmal die Definition von "Lebesgue-messbar" klar machen.

Wenn du das hast, dann siehst, wo du die Abzählbarkeit von [mm] \IQ [/mm] einbauen musst.

LG, Alex

Bezug
                                
Bezug
Lebesgue-messbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Mo 23.11.2009
Autor: julsch

Unsere Definition von Lebesgue-messbar lautet:

Die Sigma-Algebra der bzgl. des äußeren Lebesguemaßes [mm] \lambda [/mm]  : [mm] \mathcal{P}(\IR^{n})\to [/mm] [0, [mm] \infty] [/mm] messbaren Mengen bezeichnen [mm] L(\IR^{n}). [/mm] Ihre Elemente heißen Lebesgue-messbare Mengen.


Was hab ich mir denn darunter vorzustellen? Kann mir jemand die Definition erklären?

LG Julsch

Bezug
                                        
Bezug
Lebesgue-messbar: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Di 24.11.2009
Autor: Gonozal_IX

Hiho,

> Die Sigma-Algebra der bzgl. des äußeren Lebesguemaßes
> [mm]\lambda[/mm]  : [mm]\mathcal{P}(\IR^{n})\to[/mm] [0, [mm]\infty][/mm] messbaren
> Mengen bezeichnen [mm]L(\IR^{n}).[/mm] Ihre Elemente heißen
> Lebesgue-messbare Mengen.

Die "Sigma-Algebra".... da liegt der Hase im Pfeffer begraben.

Da [mm] \IQ [/mm] abzählbar ist, lässt sich [mm] \IQ [/mm] darstellen als [mm] $\bigcup_{n\in \IN} q_n$ [/mm] wobei [mm] q_n [/mm] alle Punkte von [mm] \IQ [/mm] sind.

Was weisst du nun über die Lesbeque-Meßbarkeit von Punkten und über abzählbare Vereinigungen von Lesbeque-Mengen?

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de