www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - Leere Menge unabhängig?
Leere Menge unabhängig? < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leere Menge unabhängig?: Lösungsvorschlag mit Frage
Status: (Frage) beantwortet Status 
Datum: 19:11 Di 04.12.2012
Autor: starki

Aufgabe
Sei [mm] \Delta \cup \Theta [/mm] eine Menge aussagenlogischer Formeln. [mm] \Delta [/mm] heißt unabhängig gdw für alle [mm] \phi \in \Delta [/mm]

[mm] \Delta \\ \{\phi\} \nvDash \phi. [/mm]

[mm] \Delta [/mm] heißt eine Axiomatisierung von [mm] \Theta [/mm] gdw

[mm] \{ \phi : \Theta \models \phi \} [/mm] = [mm] \{ \phi : \Delta \models \phi \} [/mm]

Hat jede Menge [mm] \Theta [/mm] aussagenlogischer Formeln hat eine unabhängige Axiomatisierung?

Also, nach langem überlegen kam ich auf folgende Beweisidee:

Man nehme eine nichtleere Menge aussagenlogischer Formeln, die sagen wir mal, abhängig ist. Dann schmeißen wir Schritt für Schritt jede Formel weg, die die Menge abhängig macht bis sie entweder unabhängig ist oder bis sie nur noch ein Element hat.

Wenn dieses Element keine Tautologie ist, dann ist diese Menge wiederrum unabhängig.

Ist dieses Element jedoch eine Tautologie, so kann dieses Element wiederrum aus der Menge genommen werden.

Jedoch frage ich mich nun, ob die leere Menge an sich unabhängig ist? Und stimmt mein Beweis? Oder habe ich da was falsch?

        
Bezug
Leere Menge unabhängig?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:09 Mi 05.12.2012
Autor: hippias


> Sei [mm]\Delta \cup \Theta[/mm] eine Menge aussagenlogischer
> Formeln. [mm]\Delta[/mm] heißt unabhängig gdw für alle [mm]\phi \in \Delta[/mm]
>  
> [mm]\Delta \\ \{\phi\} \nvDash \phi.[/mm]
>  
> [mm]\Delta[/mm] heißt eine Axiomatisierung von [mm]\Theta[/mm] gdw
>  
> [mm]\{ \phi : \Theta \models \phi \}[/mm] = [mm]\{ \phi : \Delta \models \phi \}[/mm]
>  
> Hat jede Menge [mm]\Theta[/mm] aussagenlogischer Formeln hat eine
> unabhängige Axiomatisierung?
>  Also, nach langem überlegen kam ich auf folgende
> Beweisidee:
>  
> Man nehme eine nichtleere Menge aussagenlogischer Formeln,
> die sagen wir mal, abhängig ist. Dann schmeißen wir
> Schritt für Schritt jede Formel weg, die die Menge
> abhängig macht bis sie entweder unabhängig ist oder bis
> sie nur noch ein Element hat.
>  
> Wenn dieses Element keine Tautologie ist, dann ist diese
> Menge wiederrum unabhängig.
>  
> Ist dieses Element jedoch eine Tautologie, so kann dieses
> Element wiederrum aus der Menge genommen werden.
>  
> Jedoch frage ich mich nun, ob die leere Menge an sich
> unabhängig ist?

Ja, ist sie: Nimm das Gegenteil an und leite einen Widerspruch her.

> Und stimmt mein Beweis? Oder habe ich da
> was falsch?

Hast was falsch: Die Idee ist voellig richtig, so durchfuehrbar aber nur bei endlichen Mengen. Fuer den allgemeinen Fall benutzt man in solchen Faellen meist das Lemma von Zorn, indem etwa dieses benutzt wird, um die Existenz einer maximalen unabhaengigen Aussagenmenge zu sichern und Du von dieser dann zeigst, dass sie die gewuenschte Axiomatisierung liefert.  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de