www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Leibnitz-Kriterium
Leibnitz-Kriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leibnitz-Kriterium: Frage
Status: (Frage) beantwortet Status 
Datum: 18:55 So 26.06.2005
Autor: Fabian

Hallo,

Ich habe hier eine Aufgabe bei der ich nicht weiterkomme!

Ich soll zeigen das die Reihe

[mm] \sum\limits_{n = 1}^\infty {\frac{1}{n} + \frac{{\left( { - 1} \right)^n }}{{\sqrt n }}} [/mm]

divergiert!

Normalerweise sieht das nach Leibnitz-Kriterium aus. Die nächste Frage ist aber, warum man hier das Leibnitz-Kriterium nicht anwenden kann???

Ich habe im Moment keine Ahnung wie ich da rangehen soll!

Vielen Dank für eure Antworten!

Viele Grüße

Fabian


        
Bezug
Leibnitz-Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 So 26.06.2005
Autor: Christian


> Hallo,
>  
> Ich habe hier eine Aufgabe bei der ich nicht weiterkomme!
>  
> Ich soll zeigen das die Reihe
>  
> [mm]\sum\limits_{n = 1}^\infty {\frac{1}{n} + \frac{{\left( { - 1} \right)^n }}{{\sqrt n }}}[/mm]
>
> divergiert!
>  
> Normalerweise sieht das nach Leibnitz-Kriterium aus. Die
> nächste Frage ist aber, warum man hier das
> Leibnitz-Kriterium nicht anwenden kann???
>  
> Ich habe im Moment keine Ahnung wie ich da rangehen soll!
>  
> Vielen Dank für eure Antworten!
>  
> Viele Grüße
>  
> Fabian

Hallo Fabian!

Es gilt meines Erachtens:
[mm]\sum\limits_{n = 1}^\infty {\frac{1}{n} + \frac{{\left( { - 1} \right)^n }}{{\sqrt n }}} \ge \summe_{n=1}^{\infty} \frac{1}{n}-\frac{1}{\sqrt{n}}[/mm] ...
und für genügend großes n:
[mm] $\ge \summe_{n=1}^{\infty} \frac{1}{n}-\frac{1}{2n} \to \infty$. [/mm]

Gruß,
Christian

Bezug
        
Bezug
Leibnitz-Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 So 26.06.2005
Autor: Dreieck

Hi Fabian!

andere Idee:

[mm]\sum\limits_{n = 1}^\infty {(\frac{1}{n} + \frac{{\left( { - 1} \right)^n }}{{\sqrt n }})}[/mm]
[mm] = 1 -1 + \sum\limits_{n = 1}^\infty {(\frac{1}{2n} + \frac{(-1)^{2n}}{\sqrt {2n}} + \frac{1}{2n+1} + \frac{(-1)^{2n+1}}{\sqrt {2n+1}})}[/mm]
[mm] = \sum\limits_{n = 1}^\infty {(\frac{1}{2n} + \frac{1}{2n+1} + \underbrace{\frac{1}{\sqrt {2n}} - \frac{1}{\sqrt {2n+1}}}_{> 0} )}[/mm]
[mm] > \sum\limits_{n = 1}^\infty {(\frac{1}{2n} + \frac{1}{2n+1} )}[/mm]
[mm] = \sum\limits_{n = 2}^\infty {(\frac{1}{n} )}[/mm]

und diese Reihe ist ja bekanntlich divergent
somit ist [mm]\sum\limits_{n = 1}^\infty {(\frac{1}{n} + \frac{{\left( { - 1} \right)^n }}{{\sqrt n }})}[/mm] auch divergent.

sollte hoffentlich reichen.

lG
Peter


Bezug
        
Bezug
Leibnitz-Kriterium: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:08 So 26.06.2005
Autor: Fabian

Hallo ihr beiden!

Vielen Dank für die beiden Antworten! Haben mir echt geholfen!

Viele Grüße

Fabian

Bezug
        
Bezug
Leibnitz-Kriterium: Noch einfacher?
Status: (Antwort) fertig Status 
Datum: 21:48 So 26.06.2005
Autor: Loddar

Hallo Fabian!


Geht es nicht noch einfacher?


[mm]\sum\limits_{n = 1}^\infty {\left[\frac{1}{n} + \frac{{\left( { - 1} \right)^n }}{{\sqrt n }}\right]} \ = \ \underbrace{\sum\limits_{n = 1}^\infty {\frac{1}{n}}}_{divergent} \ + \ \underbrace{\sum\limits_{n = 1}^\infty {\frac{{\left( { - 1} \right)^n }}{{\sqrt n }}}}_{konvergent} \ \ \ \ \Rightarrow \ \ \ \ \ \text{divergent!}[/mm]


Gruß
Loddar


Bezug
                
Bezug
Leibnitz-Kriterium: Super!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 So 26.06.2005
Autor: Fabian

Hallo Loddar!

So geht es natürlich auch! An diese kleinen Sätze habe ich ja gar nicht mehr gedacht!!!

Viele Grüße

Fabain

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de