www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Leibnitz kriterium
Leibnitz kriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leibnitz kriterium: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:44 Mi 24.01.2007
Autor: Trapt_ka

Aufgabe
mdie folgende folgende reihe ist gegeben.
[mm] \sum_{v=2}^{infty} ((-1)^{n}*\wurzel{v^{2}-4}/v^{2} [/mm]
Diese Reihe untersuchen ich  mit dem Leibniz-Kriterium
nun bin ich an der stelle
[mm] a_{n+1}-a_{n}=(v*\wurzel{(v+1)^{2}-4}-(v+1)^{2}*\wurzel{v^{2}-4})/(v+1)^{2}*v) [/mm]

nun komm ich net weiter da ich die wurzeln nicht weg bekomme und somit nicht zeigen kann das die reihe positiv und eine núllfolge ist

        
Bezug
Leibnitz kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Mi 24.01.2007
Autor: angela.h.b.


> mdie folgende folgende reihe ist gegeben.
>  [mm] \sum_{v=2}^{infty} ((-1)^{n}*\wurzel{v^{2}-4}/v^{2} [/mm]
>  Diese
> Reihe untersuchen ich  mit dem Leibniz-Kriterium
>  nun bin ich an der stelle
> [mm] a_{n+1}-a_{n}=(v*\wurzel{(v+1)^{2}-4}-(v+1)^{2}*\wurzel{v^{2}-4})/(v+1)^{2}*v) [/mm]
>  nun komm ich net weiter da ich die wurzeln nicht weg
> bekomme und somit nicht zeigen kann das die reihe positiv
> und eine núllfolge ist

Hallo,

zunächst einmal ist bei Deiner Umformung etwas schief gegangen.

Es muß heißen

[mm] a_{n+1}-a_{n}=\bruch{v^2*\wurzel{(v+1)^{2}-4}-(v+1)^{2}*\wurzel{v^{2}-4}}{(v+1)^{2}*v^2} [/mm]

Die Wurzel bekommst Du im Zähler weg, wenn Du mit

[mm]v^2*\wurzel{(v+1)^{2}-4}+(v+1)^{2}*\wurzel{v^{2}-4} [/mm] erweiterst. Die Wurzeln, die Du dann im Nenner hast, stören nicht weiter, denn es ist garantiert, daß der Nenner positiv ist.

Du solltest Dir aber im Klaren darüber sein, warum Du
[mm] a_{n+1}-a_{n} [/mm]
berechnest. Was möchtest Du herausbekommen?

Was mußt Du fürs Leibnizkriterium zeigen?

1.
[mm] \limes_{n\rightarrow\infty}\wurzel{n^{2}-4}/n^{2}=0 [/mm]
Dabei stört die Wurzel doch nicht sonderlich:

[mm] \wurzel{n^{2}-4/n^{2}}=\wurzel{\bruch{1}{n^2}-\bruch{4}{n^4}}, [/mm] da kann man den Grenzwert gut sehen.

2. [mm] \wurzel{n^{2}-4}/n^{2} \le [/mm] 0.
Auch hier macht die Wurzel kein Problem

3.
Die Reihe  [mm] (a_n):=(\wurzel{n^{2}-4}/n^{2}) [/mm] ist monoton fallend.
Es muß also [mm] a_n-a_{n+1} \ge [/mm] 0 sein (oder [mm] a_{n+1}-a_{n} \le [/mm] 0).

Ich hatte das Gefühl, daß Du da auf dem falschen Dampfer warst, denn Du schriebst von "positiv".

Gruß v. Angela





Bezug
                
Bezug
Leibnitz kriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 Mi 24.01.2007
Autor: Trapt_ka

vielen dakn nunist mir endlich das leibnitz kritrium klar
das wird mir sehr helfen
echt vielen dank


Bezug
                        
Bezug
Leibnitz kriterium: Leibniz. Wie die Kekse.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:22 Mi 24.01.2007
Autor: angela.h.b.

>nunist mir endlich das leibnitz kritrium klar

Das freut mich.

Aber schreib bitte NIE WIEDER Leibniz mit "tz".

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de