www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Leiterschleife
Leiterschleife < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leiterschleife: Induzierte Spannung
Status: (Frage) beantwortet Status 
Datum: 12:45 So 01.06.2008
Autor: schlaumeier

Nun ja, ich sitze jetzt schon eine ganze Weile und komme nicht auf die Lösung.
Ich habe einen langen unendlichen Leiter, durch den ein Strom I mit konstanter Richtung fließt. Das durch den Strom erzeugte Magnetfeld ist mü Null mal I durch 2Pi r.
im Abstand r vom Leiter befinde sich eine Leiterschleife mit Längen a und b, wobei b parallel zu dem Leiter ist und Leiter und Schleife in einer Ebene liegen.
Den Fluss habe ich berechnet und nach meiner Meinung  beträgt dieser  also (mü Nul mal b mal I mal ln (a/r))/2Pi.
Nun bewege sich die Leiterschleife von dem Leiter mit konstanter Geschwindigkeit v weg. Gesucht ist die Induktionsspannung in der 1xN- Spule.....
Da ich mit Infinitesimalrechnung noch keine große Erfahrung habe, komme ich immer auf Integrale die keinen Sinn ergeben.dr/dt ist die Geschwindigkeit, das Feld B ändert sich aber mit dem Abstand r, und zwar mit 1/r.
k=(mü Null mal I mal b)/2 PI
Fluss PHI(t0)=k*ln(a/r)
PHI(t1)=k*ln(a/r+delta r)
dPHI= Phi 2-Phi 1, wobei PHi 2 gegen Phi 1 strebt.
dPHi= k*ln(r/dr)
Wie bekomme ich bloß dr aus ln raus und wie leite ich dPhi dann zeitlich ab???
Danke für Hilfe zur Selbsthilfe!
schlaumeier
Diese Frage existiert nur in diesem Forum!!!

        
Bezug
Leiterschleife: Magnetischer Fluss
Status: (Antwort) fertig Status 
Datum: 13:42 So 01.06.2008
Autor: Infinit

Hallo schlaumeier,
zunächst eine große Bitte, nutze das Formelsystem, das Lesen der Gleichungen vereinfacht sich dadurch ungemein und Uneindeutigkeiten werden vermieden.
Das magnetische Feld um den Leiter verringert sich mit dem Abstand zum Leiter als
$$ B = [mm] \mu_0 \bruch{i}{2 \pi r} [/mm] $$
Für den Fluss durch die Leitersschleife ist die Breite a von Interesse, denn in deren Richtung nimmt das Magnetfeld ab.
Der Fluss durch die Schleife ist demzufolge
$$ [mm] \Phi [/mm] = [mm] \int_{r_1}^{r_2} [/mm] B(r) b dr = [mm] \bruch{ \mu_0 b i}{2 \pi} \ln (\bruch{r_2}{r_1}) \, [/mm] .$$ Hierbei ist [mm] r_1=r [/mm] und [mm] r_2=r+a [/mm]. Dieser Fluss hängt aber von den Koordinaten r1 und r2 ab, die sich mit der Zeit ändern.
[mm] r_1(t=0) = r [/mm] und [mm] r_2(t=0)=r+a [/mm]. Der ganze Rahmen bewegt sich mit der Geschwindigkeit v ud so schnell ändert sich auch der Wert für den Radius. Also kommt man zu
$$ [mm] r_1(t) [/mm] = r+vt $$ und [mm] $$r_2(t) [/mm] = r+a+vt [mm] \, [/mm] . $$ Das Ganze jetzt einsetzen und ableiten.
Viel Spaß dabei,
Infinit

Bezug
                
Bezug
Leiterschleife: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:49 So 01.06.2008
Autor: schlaumeier

Danke sehr habe jetzt ein sinnbetontes Ergebnis.
diff(Phi, t) = [mm] mu_0*b*i*'/'(2*Pi)*(v*a-vr)/((v*t+a)*(v*t+r)) [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de