www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Lemma von Fatou?
Lemma von Fatou? < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lemma von Fatou?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 So 01.06.2008
Autor: Ole-Wahn

Aufgabe 1
Sei [mm] $(\Omega [/mm] , A, [mm] \mu)$ [/mm] ein Maßraum und [mm] $f,f_n [/mm] : [mm] \Omega \rightarrow \IR,~n \in \IN$ [/mm] nicht negative [mm] $\mu$-integrierbare [/mm] Funktionen. Zu zeigen:


[mm] $\lim_{n \rightarrow \infty} \int_{\Omega} |f_n-f|d\mu [/mm] = 0 [mm] ~\Rightarrow~\lim_{n \rightarrow \infty} \int _{\Omega} f_n [/mm] d [mm] \mu [/mm] = [mm] \int_{\Omega} [/mm] f d [mm] \mu [/mm]

Aufgabe 2
Sei [mm] $lim_{n\rightarrow \infty} f_n [/mm] = f$ fast überall und [mm] $\lim_{n \rightarrow \infty} \int_{\Omega} f_n d\mu [/mm] = [mm] \int_{\Omega} [/mm] f d [mm] \mu$. [/mm] Dann ist
[mm] $\lim_{n \rightarrow \infty} \int_{\Omega} |f_n [/mm] -f| [mm] d\mu [/mm] = 0$

Hallo,

leider weiß ich nicht so recht, wie ich rangehen soll! Lemma von Fatou scheint der Top-Hinweis zu sein, allerdings fühl ich mich da nicht besonders sicher mit!! Wäre schön, wenn jemand mir das an Hand dieser Aufgabe nochmal verdeutlichen kann!!

Danke,

Ole

        
Bezug
Lemma von Fatou?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 So 01.06.2008
Autor: felixf

Hallo!

> Sei [mm](\Omega , A, \mu)[/mm] ein Maßraum und [mm]f,f_n : \Omega \rightarrow \IR,~n \in \IN[/mm]
> nicht negative [mm]\mu[/mm]-integrierbare Funktionen. Zu zeigen:
>
> [mm]$\lim_{n \rightarrow \infty} \int_{\Omega} |f_n-f|d\mu[/mm] = 0
> [mm]~\Rightarrow~\lim_{n \rightarrow \infty} \int _{\Omega} f_n[/mm]
> d [mm]\mu[/mm] = [mm]\int_{\Omega}[/mm] f d [mm]\mu[/mm]

Es gilt doch $| [mm] \int_\Omega [/mm] f [mm] \; d\mu [/mm] | [mm] \le \int_\Omeag [/mm] |f| [mm] \; d\mu$ [/mm] (wenn ihr das noch nicht hattet: zeige es! arbeite dafuer mit Treppenfunktionen, dass es fuer solche gilt folt aus der Dreiecksungleichung). Und die zu zeigende Aussage [mm] $\lim \int_\Omega f_n \; d\mu [/mm] = [mm] \int_\Omega [/mm] f [mm] \; d\mu$ [/mm] ist ja gerade aequivalent zu [mm] $\lim \int_\Omega f_n [/mm] - f [mm] \; d\mu [/mm] = 0$.

>  Sei [mm]lim_{n\rightarrow \infty} f_n = f[/mm] fast überall und
> [mm]\lim_{n \rightarrow \infty} \int_{\Omega} f_n d\mu = \int_{\Omega} f d \mu[/mm].
> Dann ist
>  [mm]\lim_{n \rightarrow \infty} \int_{\Omega} |f_n -f| d\mu = 0[/mm]

Ich vermute mal, dass du das Lemma von Fatou hier schon gebrauchen kannst. Dafuer kenn ich mich grad zu wenig mit Masstheorie aus ;-)

LG Felix


Bezug
        
Bezug
Lemma von Fatou?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:32 So 01.06.2008
Autor: Merle23

Zu Aufgabe 1: Statt lim kannste auch lim inf schreiben, da ja die Folge konvergiert (gegen Null). Dann kannste mit dem Lemma von Fatou den lim inf ins Integral reinziehen. Also muss lim inf  [mm] (f_n [/mm] - f) fast überall Null sein.

Bezug
        
Bezug
Lemma von Fatou?: Antwort
Status: (Antwort) fertig Status 
Datum: 01:56 Mo 02.06.2008
Autor: Merle23

Zu Aufgabe 2: Nimm das Integral über f d-mü nach links rüber und zieh es in den Limes rein. Dann die Integrale zusammenfassen. Das [mm] f_n=f [/mm] f.ü. brauchst du für das Setzen der Betragsstriche.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de