Lemma von Nakayama < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei K ein Körper und sei F ∈ K[X,Y] nichtkonstant ohne mehrfachen Faktor mit zugehöriger algebraischer Kurve C = V(F). Es sei P = (a,b) ∈ C ein Punkt der Kurve mit maximalem Ideal m = (X−a,Y −b) und mit lokalem Ring R = [mm] (K[X,Y]_m)/(F). [/mm] Dann sind folgende Aussagen äquivalent:
1) R ist ein diskreter Bewertungsring.
2) Die Multiplizität von P ist eins. |
Probleme bereitet mir die Richtung 1) -> 2).
Zunächst steht in dem Beweis folgendes geschrieben:
"Es genügt also zu zeigen, dass für einen lokalen Ring einer ebenen algebraischen Kurve, der ein diskreter Bewertungsring ist, die Restklassenmoduln [mm] m^n/m^{n+1} [/mm] = [mm] m^n/(m^n*m) [/mm] alle eindimensional uüber dem Restklassenkörper R/m = K sind. Dies folgt aber wegen [mm] m^n [/mm] = [mm] (t^n) [/mm] direkt aus dem Lemma von Nakayama."
Hierbei ist t der uniformierende Parameter des diskreten Bewertungsringes R.
Das Lemma von Nakayama kenne ich und will es auch auf den endlich erzeugten R/m - Vektorraum [mm] m^n/m^{n+1} [/mm] anwenden. Dann bekomme ich allerdings, dass [mm] m^n=0 [/mm] ist? Ich bekomme allerdings nicht raus, dass [mm] t^n [/mm] eine Basis von [mm] m^n/m^{n+1} [/mm] ist.
Kann mir da jemand helfen?
Vielen Dank im Voraus.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:59 Fr 24.06.2016 | Autor: | hippias |
Ich verstehe nicht ganz weshalb man überhaupt das Lemma von Nakayama benötigen sollte: Es ist [mm] $m^{n}= Rt^{n}$. [/mm] Dann wird auch der $R$-modul [mm] $m^{n}/m^{n+1}$ [/mm] von [mm] $t^{n}+m^{n+1}$ [/mm] erzeugt und somit ist [mm] $t^{n}+m^{n+1}$ [/mm] auch Erzeuger als $R/m$-Modul.
|
|
|
|