Lie Brackets Transformation < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 19:42 Di 08.07.2014 | Autor: | qsxqsx |
Hi Leute,
Ich hab im Skript alles verstanden bis auf ein letztes, aergerliches Ueberbleibsel was ich unbedingt noch verstehen will auch wenn ich bloss ein Ingenieur bin und hoffe auf eine Mathematiker der mir hier helfen kann:
Seien f(x) und g(x) unendlich oft differenzierbare (smooth) Vektorfelder im [mm] \IR. [/mm] Die Lie-Bracket von f und g ist definiert als [f(x),g(x)] = [mm] \bruch{\partial f}{\partial x} \cdot [/mm] g(x) - [mm] \bruch{\partial g}{\partial x} \cdot [/mm] f(x).
Des weiteren sei [mm] ad^{k}_{f(x)} [/mm] g(x) := [f(x), [mm] ad^{k-1}_{f(x)}g(x)] [/mm] mit [mm] ad_{f(x)} [/mm] g(x) = [f(x),g(x)].
Eine Distribution D ist eine Abbildung welche jedem punkt im Raum einen Unterraum tangential dazu zuordnet. D.h. eine Distribution ist eine Familie von stetig differenzierbaren Vektorfeldern welche einen Unterraum von [mm] \IR [/mm] aufspannen. Man sagt die Distribution ist involutional falls die Lie-Bracket of irgendwelchen zwei Vektorfeldern der Distribution wieder in der Distribution liegen. D.h. mit [mm] c_{ij}(x) [/mm] (stetig differenzierbare Funktionen)
[mm] [f_{i}(x),f_{j}(x)] [/mm] = [mm] \sum c^{k}_{ij} \cdot f_{k}(x)
[/mm]
[mm] D^{1}(x) [/mm] = [mm] span\{g(x)\} [/mm] und [mm] D^{j}(x) [/mm] = [mm] span\{ad^{q-1}g(x): 1 \leq q \leq j\}
[/mm]
Die Frage ist nun was ist die Bedingung damit das System [mm] \bruch{\partial x}{\partial t} [/mm] = f(x) + g(x) [mm] \cdot [/mm] u State-Feedback-Linearisierbar ist. D.h. man kann es schreiben als [mm] \bruch{\partial z}{\partial t} [/mm] = A [mm] \cdot [/mm] z + h(x) [mm] \cdot [/mm] u bzw. z = T(x).
Theorem:
Das Single Input System [mm] \bruch{\partial x}{\partial t} [/mm] = f(x) + g(x) [mm] \cdot [/mm] u ist State-Feedback-Linearisierbar falls
{g(x), ..., [mm] ad^{n-1}_{f(x)}g(x)}eine [/mm] linear unabhaengige Familie von Vektoren ist und [mm] D^{n-1} [/mm] involutional ist.
Kann mir jemand zumindest beim Intepretieren helfen? Ich versteh fast gar nichts.
Vielen Dank!
Qsxqsx
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:20 Mi 16.07.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|