www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Lim
Lim < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lim: gegen unendlich
Status: (Frage) beantwortet Status 
Datum: 12:25 Sa 07.04.2007
Autor: DoktorQuagga

Aufgabe
Noch so ein seltsamer Fall...was kommt raus, wenn ich in der folgenden Funktion x gegen unendlich laufen lasse?

[mm] \limes_{x\rightarrow\infty} [/mm]  (f(x) =  [mm] x^{- 10.000} [/mm]  *  [mm] e^{x} [/mm]  )


        
Bezug
Lim: Tipp
Status: (Antwort) fertig Status 
Datum: 12:53 Sa 07.04.2007
Autor: UE_86

Man kann solche Aufgaben auch ohne groß zu rechnen angehen, so können wir es bei uns machen.
Also nochmal die Funktion
[mm] f(x)=\limes_{n\rightarrow\infty} x^{-10.000} [/mm] * [mm] e^{x} [/mm]
In dieser Funktion wird [mm] x^{-10.000} [/mm] sehr klein -> geht gegen 0 bzw. ist immer null
und [mm] e^{x} [/mm] wird sehr groß -> geht gegen [mm] \infty [/mm]

EDIT, da nicht richtig (siehe unten)

MFG UE

Bezug
                
Bezug
Lim: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 12:58 Sa 07.04.2007
Autor: Stefan-auchLotti


> Man kann solche Aufgaben auch ohne groß zu rechnen angehen,
> so können wir es bei uns machen.
>  Also nochmal die Funktion
>  [mm]f(x)=\limes_{n\rightarrow\infty} x^{-10.000}[/mm] * [mm]e^{x}[/mm]
>  In dieser Funktion wird [mm]x^{-10.000}[/mm] sehr klein -> geht

> gegen 0 bzw. ist immer null
>  und [mm]e^{x}[/mm] wird sehr groß -> geht gegen [mm]\infty[/mm]

>  

[ok]

> Da ja das Produkt einer Multiplikation mit 0 immer 0 ist,
> kann man hier sagen, dass die Funktion gegen 0
> konvergiert.
>  

[notok]

Beim Rechnen mit unendlich gelten etwas andere Regeln.

Die Unendlichkeit überwiegt allem, so dass [mm] $\lim_{x\to\infty}f(x)=\infty$ [/mm] gilt.

> MFG UE

Grüße, Stefan.

Bezug
                        
Bezug
Lim: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 13:33 Sa 07.04.2007
Autor: UE_86


> [notok]
>  
> Beim Rechnen mit unendlich gelten etwas andere Regeln.
>  
> Die Unendlichkeit überwiegt allem, so dass
> [mm]\lim_{x\to\infty}f(x)=\infty[/mm] gilt.
>  
> > MFG UE
>
> Grüße, Stefan.

Stimmt, jetzt wo du es sagst, seh ich meinen Fehler.
Aber ist denn das Ergebnis wirklich [mm] \infty? [/mm]
Ist 0 * [mm] \infty [/mm] überhaupt definiert?...Ich bin mir jetzt gar nicht so sicher...sonst hätte das ganze nämlich keine Lösung.
MFG UE

Bezug
        
Bezug
Lim: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Sa 07.04.2007
Autor: schachuzipus

Hallo zusammen,

hier kann man zur Bestimmung des GW Herrn L'Hospital zu Rate ziehen.

Schreibe die Funktion [mm] f(x)=x^{-10000}\cdot{}e^x [/mm] um in [mm] \frac{g(x)}{h(x)}=\frac{e^x}{x^{10000}} [/mm]

Hier gehen Zähler und Nenner beide gegen [mm] \infty [/mm] für [mm] x\rightarrow \infty [/mm]

Leite Zähler und Nenner einmal ab [mm] \Rightarrow \frac{g'(x)}{h'(x)}=\frac{e^x}{10000\cdot{}x^{9999}} [/mm]

Hier gehen Zähler und Nenner immer noch beide gegen [mm] \infty [/mm] für [mm] x\rightarrow \infty [/mm]

Diese Prozedur kannst du noch 9999 mal wiederholen, dann erhältst du:

[mm] \frac{g^{(10000)}(x)}{h^{(10000)}(x)}=\frac{e^x}{10000!} [/mm]

und dieser Bruch geht gegen [mm] \infty [/mm] für [mm] x\rightarrow\infty [/mm] , da 10000! eine feste Zahl ist.

Damit geht auch [mm] \frac{g(x)}{h(x)}=\frac{e^x}{x^{10000}} [/mm] gegen [mm] \infty [/mm] für [mm] x\rightarrow\infty [/mm]


Gruß


schachuzipus

Bezug
                
Bezug
Lim: THX
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:28 Do 03.05.2007
Autor: DoktorQuagga

Danke...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de