www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Limes Grenzwerte
Limes Grenzwerte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 Do 02.06.2011
Autor: emulb

Bestimmen Sie, falls existenz, den Grenzwert der Folge [mm] (a_{n})_{n\in\IN} [/mm] für

[mm] a_{n} [/mm] := [mm] \bruch{n^{3}+7n^{2}+42}{6n^{2}+5n^{3}} [/mm]
es sind noch weitere aufgaben auf dem aufgabenblatt, die so ähnlich sind jedoch will ich es erst verstehen, danach werde ich den rest posten.

meine lösund sieht so aus:

[mm] \limes_{n\rightarrow\infty} \bruch{n^{3}+7n^{2}+42}{6n^{2}+5n^{3}} [/mm] = [mm] \limes_{n\rightarrow\infty} \bruch{n^{3}}{n^{3}} \bruch{1+7n^{2}+42}{6n^{2}+5}= \limes_{n\rightarrow\infty}\bruch{n^{2}}{n^{2}} \bruch{1+7+42}{6+5}= \bruch{50}{11} [/mm]

stimmt das so??

        
Bezug
Limes Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Do 02.06.2011
Autor: Herby

Moin,

also wenn Etwas ausgeklammert wird, dann aber überall, gelle

Bsp: [mm]3x^2+5x^3=3x^{\red{2}}+5x^{\red{2}+1}=x^{\red{2}}*(3x^{2-\red{2}}+5x^{3-\red{2}})=x^2*(3x^0+5x^1)=x^2*(3+5x)[/mm]

oder

[mm]3x^2+5x=3*x^{\red{2}}+5*x^{1}=x^{\red{2}}*(3x^{2-\red{2}}+5x^{1-\red{2}})=x^2*(3x^0+5x^{-1})=x^2*\left(3+\frac5x\right)[/mm]


Ich hoffe du verstehst, was ich damit meine :-)


LG
Herby

Bezug
                
Bezug
Limes Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:46 Do 02.06.2011
Autor: emulb

verstanden hab ich es ok

siehts dann so aus:

[mm] \limes_{n\rightarrow\infty} \bruch{n+7+42/n}{6+5n}= \bruch{\limes_{n\rightarrow\infty} n+7+42/n}{\limes_{n\rightarrow\infty} 6+5n}= \bruch{7+ \limes_{n\rightarrow\infty} n+42/n}{6+ \limes_{n\rightarrow\infty} 5n} [/mm]

wenn das so stimmt wie gehts weiter?

Bezug
                        
Bezug
Limes Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Do 02.06.2011
Autor: Herby

Hi,

> verstanden hab ich es ok
>
> siehts dann so aus:
>
> [mm]\limes_{n\rightarrow\infty} \bruch{n+7+42/n}{6+5n}= \bruch{\limes_{n\rightarrow\infty} n+7+42/n}{\limes_{n\rightarrow\infty} 6+5n}= \bruch{7+ \limes_{n\rightarrow\infty} n+42/n}{6+ \limes_{n\rightarrow\infty} 5n}[/mm]
>
> wenn das so stimmt wie gehts weiter?

nein, du kannst ruhig [mm] n^{\blue{3}} [/mm] ausklammern!


LG
Herby

Bezug
                                
Bezug
Limes Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:10 Do 02.06.2011
Autor: emulb

[mm] \limes_{n\rightarrow\infty} \bruch{1+7/n+42/n^{3}}{6/n+5}= \bruch{\limes_{n\rightarrow\infty} 1+7/n+42/n^{3}}{\limes_{n\rightarrow\infty} 6/n+5} [/mm]

Bezug
                                        
Bezug
Limes Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 Do 02.06.2011
Autor: leduart

Hallo
jetzt ist richtig, nur noch zu Ende rechnen. eigentlich darfst du den lim erst in Z und N schreiben, wenn du schon weisst, dass beide nen endlichen GW haben.
Gruss leduart


Bezug
                                                
Bezug
Limes Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:22 Do 02.06.2011
Autor: emulb

(ok also an ist ja [mm] \IN. [/mm] )

bin froh, dass ich es bis dahin geschafft habe, jedoch frag ich mich nun wie man den limes berechnet, wenn n als bruch drin steht also:

[mm] \limes_{n\rightarrow\infty} [/mm] 1+7/n + [mm] 42/n^{3} [/mm]

vorallem wie geht das dann mit dem [mm] n^{3}?? [/mm]

Bezug
                                                        
Bezug
Limes Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:46 Do 02.06.2011
Autor: Herby

Hi,

was passiert denn wenn der Nenner eines Bruches unendlich groß wird?


LG
Herby

Bezug
                                                                
Bezug
Limes Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:49 Do 02.06.2011
Autor: emulb

Somit wird der gesamte Bruch unendlich klein. Solche
Folgen haben also den Grenzwert 0???

Bezug
                                                                        
Bezug
Limes Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:52 Do 02.06.2011
Autor: leduart

Hallo
ja, GW 0 heisst du kannst zu jedem /epsilon>0 ein N angeben so dass [mm] a_n<\epsilon [/mm] für alle n>N
und das geht bei [mm] a/n^r [/mm] immer .
Gruss leduart


Bezug
                                                                                
Bezug
Limes Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:55 Do 02.06.2011
Autor: emulb

danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de