www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Limes, Log,Exp
Limes, Log,Exp < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes, Log,Exp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 So 02.09.2012
Autor: quasimo

Aufgabe
In meinen SKriptum steht:
log exp [mm] \limes_{n\rightarrow\infty} [/mm] log [mm] (1+1/n)^n [/mm] = log [mm] (\limes_{n\rightarrow\infty}(1+1/n)^n) [/mm]

Hallo,
Ich verstehe nicht wieso die beiden Therme gleich sind bzw. wieso man vertauschen darf.

Für das geamte Bsp im SKriptum siehe: http://homepage.univie.ac.at/christian.schmeiser/einfanalysis.pdf
Seite 101 ganz oben

Würde mich freuen, wenn mich da wer aufklärt.
LG,
quasimo



        
Bezug
Limes, Log,Exp: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 So 02.09.2012
Autor: Marcel

Hallo,

> In meinen SKriptum steht:
>  log exp [mm]\limes_{n\rightarrow\infty}[/mm] log [mm](1+1/n)^n[/mm] = log
> [mm](\limes_{n\rightarrow\infty}(1+1/n)^n)[/mm]
>  Hallo,
>  Ich verstehe nicht wieso die beiden Therme gleich sind
> bzw. wieso man vertauschen darf.

naja, da wurde folgendes gemacht (ich schreibe kurz [mm] $\lim_n:=\lim_{n \to \infty}$) [/mm]
Aus [mm] $1=\lim_n \log(1+1/n)^n$ [/mm] folgt [mm] $e=\exp(1)=\exp(\lim_n \log (1+1/n)^n)\,.$ [/mm]
Weil die Exponentialfunktion (insbesondere an der Stelle [mm] $1\,$) [/mm] stetig ist,
folgt
[mm] $$e=\lim_n(\exp(\log(1+1/n)^n))\,.$$ [/mm]
(Es gibt einen Satz, der "grob gesagt" besagt:
Ist [mm] $f\,$ [/mm] (eine Funktion zw. metrischen Räumen) stetig an [mm] $x_0\,,$ [/mm] so gilt,
dass für jede Folge [mm] $(x_n)_n$ [/mm] mit [mm] $x_n \to x_0$ [/mm] auch [mm] $\lim_n f(x_n)=f(x_0)\;\;(=f(\lim_n x_n))$ [/mm] folgt. Die Umkehrung des
Satzes gilt auch. In irgendeiner Art sollte der in Eurem Skript auftauchen,
und wenn er nur für Funktionen $I [mm] \to \IR$ [/mm] mit Intervallen
$I [mm] \subseteq \IR$ [/mm] formuliert ist. Ich habe das Skript jetzt aber nicht danach
durchsucht!)

Wegen [mm] $\exp\circ \log=\text{id}_{(0,\infty)}$ [/mm] ist [mm] $(\exp \circ \log)(1+1/n)^n=(1+1/n)^n\,.$ [/mm] (Für jedes $n [mm] \in \IN\,.$) [/mm]

Also
[mm] $$e=\lim_n(1+1/n)^n\,.$$ [/mm]
W.z.b.w. (Was zu beweisen war.)

P.S.
Strenggenommen steht in Deinem Skript, dass (bzw. warum das folgende) gilt
[mm] $$1=\lim \log(1+1/n)^n\,,$$ [/mm]
dann wird [mm] $\log \circ \exp=\text{id}_\IR$ [/mm] ausgenutzt:
[mm] $$1=\log (\exp(\lim_n\log(1+1/n)^n))\,.$$ [/mm]
Weil bereits die Existenz von [mm] $\lim_n\log(1+1/n)^n$ [/mm] erkannt wurde
(dieser Grenzwert ist ja [mm] $1\,,$ [/mm] wie man in der Zeile am Anfang sieht),
darfst Du nun
[mm] $$\red{(\*)}\;\;\;\exp(\lim_n\log(1+1/n)^n)=\lim_n \exp(\log(1+1/n)^n)$$ [/mm]
benutzen
[mm] $$1=\log (\exp(\lim_n\log(1+1/n)^n))\stackrel{\red{(\*)}}{=}\log (\lim_n \exp(\log(1+1/n)^n))=\log(\lim_n ((\exp \circ \log)(1+1/n)^n))\,.$$ [/mm]
Wegen [mm] $\exp \circ \log=\text{id}_{(0,\infty)}$ [/mm] folgt dann
[mm] $$1=\log (\lim_n(1+1/n)^n)\,.$$ [/mm]

Der Rest ist klar [mm] ($\exp\,$ [/mm] anwenden).

Geschickterweise (wobei das, zugegebenermaßen auch verwirren kann)
wurden diese Überlegungen halt in eine Zeile verpackt. Wie gesagt, ich
gebe zu, dass der Autor des Skriptes didaktisch vielleicht das ganze
besser in die obigen Überlegungen "aufgesplittet" hätte. Denn in der
Gleichungskette verwendet er ja Ergebnisse, die man am Anfang der
Gleichungskette sich überlegt hat. Das ist vermutlich auch der Punkt, der
Dich verwirrt hat.

P.P.S.
Sinnvoller ist es, wenn Du die Seite des Skriptes bzgl. der "internen
Seitenzählung" angibst. Also etwa "Siehe Skript Seite 94, interne Seitenzählung."
Denn ja nachdem, welchen Reader man benutzt, muss man sonst erstmal
rausfinden, wie die Differenz zwischen interner Seitenzählung und
Seitenangabe des Readers ist - bei mir ist z.B. keine Seitenangabe bzgl.
des Readers sichtbar.

Gruß,
  Marcel

Bezug
                
Bezug
Limes, Log,Exp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:09 So 02.09.2012
Autor: quasimo

Hei,
vielen dank.

Ich dachte das öffnet bei jedem im Pdf mit der Seitenzählung.
Werd ich nächste mal berücksichtigen.

Lg,
quasimo

Bezug
                        
Bezug
Limes, Log,Exp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:06 So 02.09.2012
Autor: Marcel

Hi quasimo,

> Hei,
>  vielen dank.

gerne! :-)
  

> Ich dachte das öffnet bei jedem im Pdf mit der
> Seitenzählung.
>  Werd ich nächste mal berücksichtigen.

Ist kein Problem - ich hab' da irgendso'n pdf-reader, der Firefoxintern
arbeitet. Kann auch sein, dass ich die Seitenzählung einfach übersehen
habe. Aber mit der internen bist Du eigentlich immer auf der sicheren Seite!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de