www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Limes Superior u symm. Diff.
Limes Superior u symm. Diff. < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes Superior u symm. Diff.: Unklar
Status: (Frage) beantwortet Status 
Datum: 10:54 Mi 30.05.2012
Autor: Blackwolf1990

Aufgabe
Es seien [mm] (A_{n}), (B_{n}) \subset [/mm] X, A = [mm] \underline{\limes_{n\rightarrow\infty}} A_{n}, [/mm] B = [mm] \overline{\limes_{n\rightarrow\infty}} A_{n}, [/mm] C [mm] \subset [/mm] X.

Zeigen Sie, dass dann gilt:
[mm] \overline{\limes_{n\rightarrow\infty}} A_{n} [/mm] \ [mm] \underline{\limes_{n\rightarrow\infty}} A_{n} [/mm] = [mm] \overline{\limes_{n\rightarrow\infty}} (A_{n} \Delta A_{n+1}) [/mm]

Hallo liebe Mathefreunde,

ich arbeite zur Zeit wiederholend das Buch Maß-und Integrationstheorie von Elstrodt durch, aus dem diese Aufgabe stammt. Leider komme ich damit nicht zurecht, ich kann es zwar bis hierhin auflösen:

[mm] \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} [/mm] \ [mm] \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k} [/mm] soll gleich sein zu [mm] \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} (A_{k} \Delta A_{k+1}) [/mm] = [mm] \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} ((A_{k}\cup A_{k+1}) [/mm] \ [mm] (A_{k}\cap A_{k+1})) [/mm]

aber dann ist schluss ^^".. wäre dankbar, wenn mir jemand weiterhelfen kann, ob es vielleich irgendwelche Rechenregeln oder ähnliches dafür gibt, wie man da die Gleichheit elegant zeigen kann.
Ich nehme ja an, es gibt leider keine Lösungen zu dem Buch oder weiß da jemand was? (Ist nämlich sehr schade, weil da einige gute Aufgaben drin sind)

Viele Grüße und Danke im voraus !
Blacki

        
Bezug
Limes Superior u symm. Diff.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Mi 30.05.2012
Autor: fred97

Vielleicht hilf Dir das weiter:

$ x [mm] \in \underline{\limes_{n\rightarrow\infty}} A_{n} [/mm] $  [mm] \gdw [/mm]  $x [mm] \in A_n$ [/mm] für fast alle n.

$ x [mm] \in \overline{\limes_{n\rightarrow\infty}} A_{n} [/mm] $  [mm] \gdw [/mm]  $x [mm] \in A_n$ [/mm] für unendlich viele n.

FRED

Bezug
                
Bezug
Limes Superior u symm. Diff.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 Mi 30.05.2012
Autor: Blackwolf1990

Danke für deine Antwort! :) Aber leider hilft mir das nur bedingt weiter...

wenn ich das mit deinen Formulierungen notiere steht dann soetwas da wie:

"Die Menge, die alle diejenigen x enthält, die in unendlich vielen [mm] A_{n} [/mm] liegen aber nicht nur für fast alle n, ist gleich der Menge aller y, die in unendlichen vielen symmetrischen Differenzen [mm] A_{n} [/mm] und [mm] A_{n+1} [/mm] liegen."

Also beschreibt dass erste doch die Menge alle x, die nur in endlich vielen [mm] A_{n} [/mm] liegen oder?
Und die symmetrische Differenz beschreibt doch die x, die in einer der beiden Mengen liegt. Und dann soll bei lim sup dann diese x in unendlich vielen dieser symm. Differenzen stehen?

Komme damit irgendwie nicht zurecht.. Geschweige denn, das mathematisch zu formulieren.

Wäre für Hilfe sehr dankbar!^^
Viele Grüße.
Blackwolf

Bezug
                        
Bezug
Limes Superior u symm. Diff.: Antwort
Status: (Antwort) fertig Status 
Datum: 10:41 Sa 02.06.2012
Autor: tobit09

Hallo Blackwolf,


> wenn ich das mit deinen Formulierungen notiere steht dann
> soetwas da wie:
>  
> "Die Menge, die alle diejenigen x enthält, die in
> unendlich vielen [mm]A_{n}[/mm] liegen aber nicht nur für fast alle n,

"Die Menge aller x, die für unendlich viele [mm] $n\in\IN$, [/mm] aber nicht für fast alle [mm] $n\in\IN$ [/mm] in [mm] $A_n$ [/mm] liegen."

Mit anderen Worten: "Die Menge aller x, die für unendlich viele [mm] $n\in\IN$ [/mm] in [mm] $A_n$ [/mm] liegen und gleichzeitig für unendlich viele [mm] $n\in\IN$ [/mm] nicht in [mm] $A_n$ [/mm] liegen."

> ist gleich der Menge aller y, die in unendlichen vielen
> symmetrischen Differenzen [mm]A_{n}[/mm] und [mm]A_{n+1}[/mm] liegen."

[ok]

> Also beschreibt dass erste doch die Menge alle x, die nur
> in endlich vielen [mm]A_{n}[/mm] liegen oder?

Nein.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de