www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Limes durch Integral zeigen
Limes durch Integral zeigen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes durch Integral zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:45 Do 24.11.2011
Autor: eddiebingel

Aufgabe
a) Beweisen sie durch Betrachten von [mm] \integral_{0}^{1}{x^{m} dx} [/mm] die Formel:
[mm] \limes_{n\rightarrow\infty}\bruch{1^{m} + 2^{m} + ... + n^{m}}{n^{m+1}} [/mm] = [mm] \bruch{1}{m+1} [/mm]

b) Berechnen Sie [mm] \limes_{n\rightarrow\infty} [/mm] n [mm] (\bruch{1}{1^{2} + n^{2}} [/mm] + ... + [mm] \bruch{1}{n^{2} + n^{2}}) [/mm] Hinweis: Betrachte [mm] \integral_{}^{}{ \bruch{1}{1+x^{2}}dx} [/mm]

So hier komme ich nicht weiter ich kann zwar jeweils die Integrale berechnen
aber keinerlei Schimmer wie ich das zur Anwendung bringe

Bei der a) kommt ja als Stammfunktion [mm] \bruch{1}{m+1}*x^{m+1} [/mm] heraus, wenn ich jetzt die Grenzen einsetze habe ich nachdem Hauptsatz [mm] \bruch{1}{m+1}. [/mm] Aber wie übertrage ich das auf den Limes??

Und bei der b) weiss ich lediglich dass das Integral der arctan ist sonst komm ich hier nicht weiter

lg eddie

        
Bezug
Limes durch Integral zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Do 24.11.2011
Autor: fred97


> a) Beweisen sie durch Betrachten von
> [mm]\integral_{0}^{1}{x^{m} dx}[/mm] die Formel:
>  [mm]\limes_{n\rightarrow\infty}\bruch{1^{m} + 2^{m} + ... + n^{m}}{n^{m+1}}[/mm]
> = [mm]\bruch{1}{m+1}[/mm]
>  
> b) Berechnen Sie [mm]\limes_{n\rightarrow\infty}[/mm] n
> [mm](\bruch{1}{1^{2} + n^{2}}[/mm] + ... + [mm]\bruch{1}{n^{2} + n^{2}})[/mm]
> Hinweis: Betrachte [mm]\integral_{}^{}{ \bruch{1}{1+x^{2}}dx}[/mm]
>  
> So hier komme ich nicht weiter ich kann zwar jeweils die
> Integrale berechnen
>  aber keinerlei Schimmer wie ich das zur Anwendung bringe
>  
> Bei der a) kommt ja als Stammfunktion
> [mm]\bruch{1}{m+1}*x^{m+1}[/mm] heraus, wenn ich jetzt die Grenzen
> einsetze habe ich nachdem Hauptsatz [mm]\bruch{1}{m+1}.[/mm] Aber
> wie übertrage ich das auf den Limes??

Für n [mm] \in \IN [/mm] betrachte die Zerlegung

          [mm] $\{0, \bruch{1}{n}, \bruch{2}{n}, ...., \bruch{n-1}{n}, \bruch{n}{n}\}$ [/mm]

von [0,1]. Dann hst Du mit

         [mm] $S_n:= \summe_{j=0}^{n}\bruch{1}{n}f(\bruch{j}{n})$ [/mm]

eine Riemannsche Zwischensumme für das Integral [mm] \integral_{0}^{1}{f(x) dx} [/mm]

Da [mm] f(x)=x^m [/mm] integrierbar ist, konvergiert [mm] S_n [/mm] wogegen ? Als was erkennst Du [mm] S_n [/mm] wieder ?


>  
> Und bei der b) weiss ich lediglich dass das Integral der
> arctan ist sonst komm ich hier nicht weiter

Vefahre ähnlich wie bei a)

FRED

>  
> lg eddie


Bezug
                
Bezug
Limes durch Integral zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 Do 24.11.2011
Autor: eddiebingel

Okay die a) hab ich gelöst bei der b) ist mein Problem dass ich ja keine Grenze an dem Intervall habe soll ich da dann auch einfach 0 und 1 nehmen und wie gehe ich hier vor?

lg eddie

Bezug
                        
Bezug
Limes durch Integral zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:19 Do 24.11.2011
Autor: leduart

Hallo
warum fragst du und überlegst nicht selbst oder probierst aus, welche Grenzen???
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de