www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Limes in L^2 / punktweise Konv
Limes in L^2 / punktweise Konv < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes in L^2 / punktweise Konv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Do 04.07.2013
Autor: steppenhahn

Aufgabe
Von einer Funktionenfolge [mm] $f_n \in L^2(\Omega)$ [/mm] für alle [mm] $n\in\IN$ [/mm] sei bekannt, dass es $f [mm] \in L^2(\Omega)$ [/mm] gibt mit [mm] $||f_n [/mm] - [mm] f||_{L^2} \to [/mm] 0$. Außerdem gebe es $g: [mm] \Omega \to \IR$ [/mm] mit [mm] $f_n \to [/mm] g$ punktweise.

Zeige f = g fast überall.

(Alle [mm] $L^2$ [/mm] - Räume sind bzgl. eines Wahrscheinlichkeitsmaßes zu verstehen und das "fast überall" auch)


Hallo,

gibt es ein einfaches Argument, um f = g fast überall zu zeigen?

Ich habe einen Satz (Riesz-Fischer?) gefunden, der mir aus [mm] $||f_n [/mm] - [mm] f||_{L^2} \to [/mm] 0$ liefert: Es gibt eine Teilfolge [mm] $f_{n_k} \to [/mm] f$ fast überall. Damit würde ja dann die Behauptung folgen.

Aber der Satz scheint nicht so einfach zu beweisen zu sein. Da ich doch schon beide Grenzfunktionen und Konvergenzen kenne, müsste es doch einen einfacheren Weg geben?

Viele Grüße,
Stefan

        
Bezug
Limes in L^2 / punktweise Konv: Antwort
Status: (Antwort) fertig Status 
Datum: 00:06 So 07.07.2013
Autor: Gonozal_IX

Hallo Stephan,

in letzter Zeit wenig on und deine Frage daher eben erst gesehen.
Auch nicht viel Zeit, daher kurz und knapp:

$0 [mm] \le E\left[(f-g)^2\right] [/mm] = [mm] E\left[(f-\liminf_{n\to\infty} f_n)^2\right] \le \liminf_{n\to\infty} E\left[(f-f_n)^2\right] [/mm] = 0$

MFG,
Gono.

Bezug
                
Bezug
Limes in L^2 / punktweise Konv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:26 So 07.07.2013
Autor: steppenhahn

Hi Gonozal,

danke! Das gefällt mir :)

Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de