www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Lin. Abb. Mehrstufiger Prozess
Lin. Abb. Mehrstufiger Prozess < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lin. Abb. Mehrstufiger Prozess: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:35 So 16.12.2012
Autor: RoughNeck

Aufgabe
Ein Mann will an einem Spielautomaten mit 5 Zuständen spielen. Diese Zustände sind die 5 Einheitsvektoren [mm] e_1,...,e_5 [/mm] des [mm] \IR^5. [/mm] Der Automat springt mit einer Wahrscheinlichkeit von [mm] \bruch{j+i}{15+5i} [/mm] von Zustand [mm] e_i [/mm] nach [mm] e_j. [/mm] Nun erstellt der Mann eine Matrix P [mm] \in \IR^{5x5}, [/mm] so dass
P [mm] e_i [/mm] = [mm] \summe_{j=1}^{5} (\bruch{j+i}{15+5i})e_j [/mm] .
Der Automatik startet in Zustand [mm] e_1 [/mm] und gewonnen hat man, wenn man nach 5 Runden den Zustand [mm] e_5 [/mm] erreicht hat. Die Wahrscheinlichkeit, von Zustand i nach j und anschließend nach k zu kommen ist [mm] \bruch{j+i}{15+5i} \bruch{k+j}{15+5j}. [/mm] Der Mann will nur spielen, wenn die Wahrscheinlichkeit [mm] \ge \bruch{1}{3} [/mm] ist.
Hilfe: Nutzen sie die Matrix P und Matrixmultiplikation.

Hallo an alle. Ich habe Probleme mit dieser Aufgabe.

Zuerst Verständnisfragen:
Man hat gewonnen, wenn man nach 5 Runden von Startzustand 1 nach Zustand 5 gekommen ist. Es wird also offensichtlich nicht ausgeschlossen, dass es so aussehen könnte: [mm] 1\to 3\to [/mm] 2 [mm] \to3 \to 4\to [/mm] 5, richtig? oder würde nur gehen, dass Zustand i < j ist? Ich weiß nicht, wie dies aussehen könnte.

Nun ja, wenn man nun die Matrix [mm] P\in \IR^5 [/mm] bestimmen will, nutze ich die gegebene Gleichung: P [mm] e_i [/mm] = [mm] \summe_{j=1}^{5} (\bruch{j+i}{15+5i})e_j [/mm]
Rechte Seite ergibt:
[mm] \vektor{\bruch{1+i}{15+5i} \\ \bruch{2+i}{15+5i} \\ \bruch{3+i}{15+5i} \\ \bruch{4+i}{15+5i} \\ \bruch{5+i}{15+5i}} [/mm] .

Somit muss auch die linke Seite dies ergeben. Also für P gilt zum Beispiel für i=1
P [mm] e_i [/mm] =  [mm] \vektor{p_{11} \\ p_{21} \\ p_{31} \\ p_{41} \\ p_{51}} [/mm] = [mm] \vektor{\bruch{2}{20} \\ \bruch{3}{20} \\ \bruch{4}{20} \\ \bruch{5}{20} \\ \bruch{6}{20i}} [/mm]
Somit ist P für i = 1,2,3,4,5
P = [mm] \pmat{ \bruch{2}{20} & \bruch{3}{25} & \bruch{4}{30} & \bruch{5}{35} & \bruch{6}{40}\\ \bruch{3}{20} & \bruch{4}{25} & \bruch{5}{30} & \bruch{6}{35} & \bruch{7}{40}\\ \bruch{3}{20} & \bruch{5}{25} & \bruch{6}{30} & \bruch{7}{35} & \bruch{8}{40}\\ \bruch{5}{20} & \bruch{6}{25} & \bruch{7}{30} & \bruch{8}{35} & \bruch{9}{40} \\ \bruch{6}{20} & \bruch{7}{25} & \bruch{8}{30} & \bruch{9}{35} & \bruch{10}{40} } [/mm]

Das ist die Matrix P [mm] \in \IR^{5x5}. [/mm]
Jetzt weiß ich aber leider nicht wie es weiter geht.
Die genutzte Formel ändert sich nun leicht P' [mm] e_j [/mm] = [mm] \summe_{k=1}^{5} (\bruch{k+j}{15+5j})e_k. [/mm]
Ich weiß jetzt nun nicht, welches Verhältnis zwischen i,j,k besteht. Die rechte Seite gibt wieder einen Vektor [mm] \in \IR^5 [/mm] . Damit auch die linke Seite. Aber die Matrix P'  müsste sich doch von P irgendwie unterscheiden oder?
Ich weiß leider nicht, was ich nun wie fortführen kann.

Ich hoffe ihr könnt mir helfen.

Liebe Grüße,
RoughNeck

        
Bezug
Lin. Abb. Mehrstufiger Prozess: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:34 Mo 17.12.2012
Autor: RoughNeck

Ich bräuchte nur eine kleine Hilfe, wie ich Vorgehen kann. Bzw eine kleine Aufgabenanalyse und Erklärungen der Zustände... Keine großartigen Rechenschritte oder so...
Wäre echt sehr nett. Liebe Grüße

Bezug
        
Bezug
Lin. Abb. Mehrstufiger Prozess: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 18.12.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de