www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Lin. Abb. mit sin und cos
Lin. Abb. mit sin und cos < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lin. Abb. mit sin und cos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Mi 19.05.2010
Autor: Antimon88

Aufgabe
Die lineare Abbildung [mm]\varepsilon : \IR^{4} \to \IR^{3}[/mm] sei bezüglich der kanonischen Basen [mm]e_{1}, e_{2}, e_{3}, e_{4}[/mm] und [mm]e_{1}, e_{2}, e_{3}[/mm] durch die Darstellungsmatrix

[mm]A=\pmat{ 1 & 0 & 0 & 0 \\ 0 & cos(\alpha) & -sin(\alpha) & 0 \\ 0 & sin(\alpha) & cos(\alpha) & 0 }[/mm]

gegeben. Was ist die geometrische Wirkung von A? Hinweis: Was passiert mit der 2-3-Ebene und was mit der 4. Achse? Berechnen Sie die Darstellungsmatrix A' von [mm] \varepsilon [/mm] bezüglich der Basen [mm]e_{1}, e_{1}+2e_{2}, 2e_{2}+e_{3}, 5e_{4}[/mm] in  [mm]\IR^{4}[/mm] und [mm]e_{1}, e_{1}+2e_{2}, 3e_{3}[/mm] in [mm]\IR^{3}[/mm].

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi Leute,

ich weiß nicht, wie ich die geometrische Wirkung interpretieren soll. Ich denken, es wir hier auf sin und cos angespielt, aber ich kann mir das nicht vorstellen, wie sich das auf die Vektoren/Matrix auswirkt, bzw. wie ich mir das (zumindest in 3D) vorstellen soll.

Mit der 2-3-Ebene sind doch quasi die 2 und 3 Zeile der Matrix gemeint  und mit der 4. Achse die 4. Spalte, oder? Ich versteh irgendwie die Fragestellung nicht. Was soll ich darauf antworten, wenn gefragt ist "was passiert". Hab schwierigkeiten mit der mathematischen Terminologie.

Wenn mir jemand soweit helfen könnte, wäre ich sehr dankbar.

Gruß

        
Bezug
Lin. Abb. mit sin und cos: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Do 20.05.2010
Autor: chrisno


> Ich denken, es wir hier auf sin und
> cos angespielt, aber ich kann mir das nicht vorstellen, wie
> sich das auf die Vektoren/Matrix auswirkt, bzw. wie ich mir
> das (zumindest in 3D) vorstellen soll.

Mach das mal in 2-D, nur mit der sin/cos Matrix. Nimm einen Punkt. z.B. (1/3) und setze für [mm] \alpha [/mm] Werte von 10°, 20° usw ein. Dann siehst Du, dass diese Teilmatrix eine Drehung bewirkt.

>  
> Mit der 2-3-Ebene sind doch quasi die 2 und 3 Zeile der
> Matrix gemeint  und mit der 4. Achse die 4. Spalte, oder?

Nun nimm einen Punkt in 4-D und lass die Matrix auf ihn los. Nenne den Punkt ganz allgemein [mm] $(x_1, x_2, x_3, x_4)$. [/mm] Welche Koordinaten hat er danach?

Anstelle von Punkt kann man hier natürlich auch von Vektor reden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de