www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Linear-inhomogenes DGL-System
Linear-inhomogenes DGL-System < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linear-inhomogenes DGL-System: partielle Lösung
Status: (Frage) beantwortet Status 
Datum: 23:13 Fr 07.02.2014
Autor: Manu3911

Aufgabe
Bestimme die allgemeine Lösung des DGL-Sysstems:

[mm] y'(t)=\begin{pmatrix}5 & -1 \\ 1 & 3 \end{pmatrix}*y(t)+e^t*\begin{pmatrix}3 \\ 3 \end{pmatrix} [/mm]

Hallo,

ich hätte da mal eine Frage: Wie komme ich auf die partikuläre Lösung?

Ich hab für den homogenen Teil ausgerechnet:
[mm] \vec y_1(t)=e^{4t}*\begin{pmatrix}1 \\ 1 \end{pmatrix} [/mm]
[mm] \vec y_2(t)=e^{4t}*[\begin{pmatrix}11 \\ 10 \end{pmatrix}+t*\begin{pmatrix}1 \\ 1 \end{pmatrix}] [/mm]

Für die partikuläre Lösung bin ich mit Probieren rangegangen und dachte mir vom Ansatz her [mm] A*e^t+C. [/mm]

Dann hab ich mir gedacht [mm] A=\begin{pmatrix}3 \\ 3 \end{pmatrix}. [/mm]

Wenn ich das in die vorgegebene Ausgangsgleichung einsetze und C bestimme, damit die Gleichung aufgeht, erhalte ich ja:
[mm] C=-e^t*\begin{pmatrix}3 \\ 3 \end{pmatrix} [/mm]

Aber dann wäre ja [mm] A*e^t+C=0. [/mm] Ich bräcuhte also mal euren Rat bei der partikulären Lösung, wie muss ich denn da rangehen, was machte ich falsch?

Vielen Dank!

        
Bezug
Linear-inhomogenes DGL-System: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Fr 07.02.2014
Autor: MathePower

Hallo Manu3911,

> Bestimme die allgemeine Lösung des DGL-Sysstems:
>  
> [mm]y'(t)=\begin{pmatrix}5 & -1 \\ 1 & 3 \end{pmatrix}*y(t)+e^t*\begin{pmatrix}3 \\ 3 \end{pmatrix}[/mm]
>  
> Hallo,
>  
> ich hätte da mal eine Frage: Wie komme ich auf die
> partikuläre Lösung?
>  
> Ich hab für den homogenen Teil ausgerechnet:
>  [mm]\vec y_1(t)=e^{4t}*\begin{pmatrix}1 \\ 1 \end{pmatrix}[/mm]
>  
> [mm]\vec y_2(t)=e^{4t}*[\begin{pmatrix}11 \\ 10 \end{pmatrix}+t*\begin{pmatrix}1 \\ 1 \end{pmatrix}][/mm]

>


[ok]

  

> Für die partikuläre Lösung bin ich mit Probieren
> rangegangen und dachte mir vom Ansatz her [mm]A*e^t+C.[/mm]
>  


Der Ansatz für die partikuläre Lösung lautet einfach nur

[mm]A*e^{t}[/mm]

, da die Inhomogenität die Form "konstanter Vektor * Exponentialfunktion" hat.


> Dann hab ich mir gedacht [mm]A=\begin{pmatrix}3 \\ 3 \end{pmatrix}.[/mm]
>  
> Wenn ich das in die vorgegebene Ausgangsgleichung einsetze
> und C bestimme, damit die Gleichung aufgeht, erhalte ich
> ja:
>  [mm]C=-e^t*\begin{pmatrix}3 \\ 3 \end{pmatrix}[/mm]
>  
> Aber dann wäre ja [mm]A*e^t+C=0.[/mm] Ich bräcuhte also mal euren
> Rat bei der partikulären Lösung, wie muss ich denn da
> rangehen, was machte ich falsch?
>  
> Vielen Dank!



Gruss
MathePower

Bezug
                
Bezug
Linear-inhomogenes DGL-System: Lösung
Status: (Frage) beantwortet Status 
Datum: 09:26 Sa 08.02.2014
Autor: Manu3911

Hallo,

also ich hab dann [mm] A=\begin{pmatrix}a_1 \\ a_2 \end{pmatrix} [/mm] festgelegt und eingesetzt, umgestellt und hab jetzt raus:
[mm] A=\begin{pmatrix}-1 \\ -1 \end{pmatrix} [/mm]
Ist das korrekt?

Gruß Manu

Bezug
                        
Bezug
Linear-inhomogenes DGL-System: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Sa 08.02.2014
Autor: MathePower

Hallo Manu3911,

> Hallo,
>  
> also ich hab dann [mm]A=\begin{pmatrix}a_1 \\ a_2 \end{pmatrix}[/mm]
> festgelegt und eingesetzt, umgestellt und hab jetzt raus:
>  [mm]A=\begin{pmatrix}-1 \\ -1 \end{pmatrix}[/mm]
>  Ist das korrekt?
>  


Ja.


> Gruß Manu


Gruss
MathePower

Bezug
                                
Bezug
Linear-inhomogenes DGL-System: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:05 Sa 08.02.2014
Autor: Manu3911

Alles klar, vielen Dank für die schnelle Hilfe, hat mir echt geholfen! ((:

Gruß Manu

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de