www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Linear unabhängig
Linear unabhängig < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linear unabhängig: Rückfrage/ Korrektur
Status: (Frage) beantwortet Status 
Datum: 23:14 Sa 03.12.2011
Autor: Zelda

Aufgabe
Hier werden Vektoren des [mm] R^5 [/mm] als Zeilen geschrieben! Sei U der von
u1:= (0,2,3,−2,1),
u2:= (1,7,7,0,3),
u3:= (1,3,1,4,1),
u4:= (2,8,5,6,3)
erzeugte Untervektorraum. Bestimmen Sie eine Basis von U und untersuchen Sie, ob
a) das System (u1,u2,u3,u4) linear unabhängig ist
b) der Vektor (3,5,−3,−1,1) in U liegt.



Ich habe u1,..,u4 als Zeilen in eine matrix übertragen. Durch Zeilenumformungen bin ich auf die zeilenstufenmatrix:
[mm]A'= \pmat{1 & 3 & 1 & 4 & 1\\ 0 & 2 & 3 & -2 & 1\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0}[/mm] gekommen.

r= 2 Stufen, also ist hier der rg(A')=2, ebenso dim U= 2.

ZR(A), somit U, hat die Basis (v1, v2) mit v1 [mm]= \pmat{1 & 3 & 1 & 4 & 1}[/mm] und v2 [mm]= \pmat{0 & 2 & 3 & -2 & 1}[/mm].

Bei der Argumentation mit der linearen Unabhängigkeit kommt ich jetzt ins Straucheln...

Die Frage ist ja, ob das System (u1,...,u4) linear unabhängig ist. Da ich aber durch elementare Zeilenumformungen u3 und u4 zu 0 gemacht habe, ist das doch ein Zeichen, dass das Sytem linear abhängig ist!

Oder nicht? Wenn nicht, bitte erkläre mir das bitte jemand.

Linear unabhängig ist ein System nur dann, wenn [mm]\lambda_{1}v_{1}+...+\lambda_{n}v_{n}= 0, [/mm] nur dann wenn [mm]\lambda_{1}=...=\lambda_{n}=0[/mm].

zu b.) habe ich raus, dass u5 nicht in U liegt, weil er sich einer Matrix mit v1, v2 nicht zu 0 machen lässt.

Diese Matrix B sieht nach Zeilenumformungen so aus:
[mm] \pmat{1 & 3 & 1 & 4 & 1\\ 0 & 2 & 3 & -2 & 1\\ 0 & 0 & 0 & -17 & 0}[/mm] [/mm]

Über Korrektur und Gespräch zu dieser Aufgabe würde ich mich freuen.



        
Bezug
Linear unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 23:38 Sa 03.12.2011
Autor: leduart

Hallo
zu a hast du recht, das hast du praktisch mit den 2 nullzeilen erledigt.
und b ist ja ne einfache Rechnung.
Gruss leduart

Bezug
        
Bezug
Linear unabhängig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:43 Sa 03.12.2011
Autor: Zelda

Zu b.) weil ich u5 nicht aus v1,v2 erzeugen kann ist u5 kein vektor von u. PUNKT :)

mehr brauche ich nicht in meinem beweis dazu zu schreiben?

Seit beginn des Semesters wäre das somit mein erster vollständig richtiger ALLEIN ausgeführter Beweis. Das wäre zu schön gerade.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de