www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - LineareAbbildungBildmenge
LineareAbbildungBildmenge < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LineareAbbildungBildmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:19 Mo 12.01.2009
Autor: sassa

Aufgabe
Gegeben ist die folgende lineare Abbildung

f: [mm] \IR^3 [/mm] -> [mm] \IR^3, [/mm]  f [mm] \vektor{x1 \\ x2 \\ x3} [/mm] = x1 [mm] \vektor{1\\ 1 \\ 2} [/mm] + x2 [mm] \vektor{0 \\ 1 \\ 1} [/mm] + x3 [mm] \vektor{1 \\ 2 \\3} [/mm]

liegt der Vektor [mm] \vektor{2 \\ 5 \\7} [/mm] in der Bildmenge der linearen Abbildung f ?  

hi

kann mir jemand sagen was ich da machen muss? , sitze da schon lange dran  

ich dachte mir das ich erstmal eine matrix aufstelle

A = [mm] \pmat{ 1 & 0 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 3 } [/mm] .

  und dann ein LGS aufstellen mit dem   [mm] \vektor{ 2 \\ 5 \\ 7 } [/mm]  und der Matrix A
und die Unbekannten ausrechen ?
danke im Vorraus


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
LineareAbbildungBildmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:30 Mo 12.01.2009
Autor: angela.h.b.


> Gegeben ist die folgende lineare Abbildung
>  
> f: [mm]\IR^3[/mm] -> [mm]\IR^3,[/mm]  f [mm]\vektor{x1 \\ x2 \\ x3}[/mm] = x1
> [mm]\vektor{1\\ 1 \\ 2}[/mm] + x2 [mm]\vektor{0 \\ 1 \\ 1}[/mm] + x3
> [mm]\vektor{1 \\ 2 \\3}[/mm]
>  
> liegt der Vektor [mm]\vektor{2 \\ 5 \\7}[/mm] in der Bildmenge der
> linearen Abbildung f ?
> hi
>  
> kann mir jemand sagen was ich da machen muss? , sitze da
> schon lange dran  
>
> ich dachte mir das ich erstmal eine matrix aufstelle
>
> A = [mm]\pmat{ 1 & 0 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 3 }[/mm] .
>
> und dann ein LGS aufstellen mit dem   [mm]\vektor{ 2 \\ 5 \\ 7 }[/mm]
>  und der Matrix A
> und die Unbekannten ausrechen ?

Hallo,

[willkommenmr].

Du kannst es  haargenau so, wie Du sagst, machen.

Die Lösung wird nicht eindeutig sein, da kannst Du Dir dann eine Möglichkeit aussuchen.

---

Wenn Du etwas genauer hinschaust, siehst Du, daß die ersten beiden Vektoren eine Basis des Bildes sind.

Damit weißt Du, daß, sofern der fragliche Vektor im Bild liegt, Du ihn aus diesen beiden Vektoren linearkombinieren können mußt, also mit [mm] x_3=0. [/mm]

Gruß v. Angela

Bezug
                
Bezug
LineareAbbildungBildmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:44 Mo 12.01.2009
Autor: sassa

ok aber  alles versteh noch nicht so ganz, also ich habe
aus dem LGS raus: x1 = 2-t   x2= 3 -t  und x 3 = t
also


[mm] \{ \vektor{x1 \\ x2 \\ x3} = \vektor{2 \\ 3 \\ 0 } + \vektor{-1 \\ -1 \\ 1 } t,t \in \IR \} [/mm]

und wie find ich jetzt raus ob der vektor [mm] \vektor{2 \\ 5 \\ 7 } [/mm] in der Bildmenge liegt ?

Bezug
                        
Bezug
LineareAbbildungBildmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 Mo 12.01.2009
Autor: angela.h.b.


> ok aber  alles versteh noch nicht so ganz, also ich habe
> aus dem LGS raus: x1 = 2-t   x2= 3 -t  und x 3 = t
> also
>  
>
> [mm]\{ \vektor{x1 \\ x2 \\ x3} = \vektor{2 \\ 3 \\ 0 } + \vektor{-1 \\ -1 \\ 1 } t,t \in \IR \}[/mm]
>  
> und wie find ich jetzt raus ob der vektor [mm]\vektor{2 \\ 5 \\ 7 }[/mm]
> in der Bildmenge liegt ?

Hallo,

da das Gleichungssystem eine Lösung hat (sogar viele!) , weißt Du im Grunde  bereits, daß der Vektor im Bild liegt.

Jetzt nehmen wir uns mal eine Lösung her, aus Gründen der Bequemlichkeit die für t=0,   [mm] \vektor{x1 \\ x2 \\ x3} [/mm] = [mm] \vektor{2 \\ 3 \\ 0 }. [/mm]

Du wirst feststellen, daß dieser Vektor durch auf den Vektor $ [mm] \vektor{2 \\ 5 \\7} [/mm] $ abgebildet wird,

und weil es einen Vektor gibt, der auf  [mm] \vektor{2 \\ 5 \\7} [/mm] abgebildet wird, ist  [mm] \vektor{2 \\ 5 \\7} [/mm] im Bild.


Teste das am besten auch noch mal für eine andere der Lösungen. es ist nicht nur ein Vektor, welcher auf den fraglichen abgebildet wird.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de