www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Lineare Abb. [Folge]
Lineare Abb. [Folge] < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abb. [Folge]: Linearität von Folgen
Status: (Frage) beantwortet Status 
Datum: 18:30 Mo 20.11.2006
Autor: ramok

Aufgabe
  f: [mm] \{{(a_i)_{i \in \IN}} | {(a_i)_{i \in \IN}} \in \IR^{\IN} { ist konvergente Folge} \} \to \IR, [/mm]
      [mm] (a_i)_{i \in \IN} \mapsto \limes_{i\rightarrow\infty}a_i [/mm]      

    * Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



Guten abend,

um zu zeigen das diese Folge eine Lineare Abbildung ist muss ich ja
(i) die abgeschlossenheit bzgl. der Addition
(ii) Homogenität,

zeigen. Wie kann ich das jetzt bei einer Folge machen? Ich muss doch sicherlich die Recheneregeln für Folgen werwenden!?

Danke

        
Bezug
Lineare Abb. [Folge]: Antwort
Status: (Antwort) fertig Status 
Datum: 08:01 Di 21.11.2006
Autor: angela.h.b.

Hallo,

verwende bitte den Formeleditor, Eingabehilfen unter dem Fenster für die Texteingabe.
SO ist die Aufgabe kaum zu verstehen, was nicht an ihrer Schwierigkeit liegt.
(Eines allerdings ist mir auch inhaltlich rätselhaft: wenn die Folgen aus [mm] R^n [/mm] sind, wie kann dann der Grenzwert in R liegen? Na, vermutlich ein Schreibfehler.)

Zu zeigen ist jedenfalls, daß [mm] f((a_i)+(b_i))=f((a_i))+f((b_i)) [/mm]  und [mm] f(k(a_i))=kf((a_i)) [/mm] gilt, und hierfür mußt Du Deine Kenntnisse aus der Analysis auspacken, wie Du schon richtig erkannt hast.

Was ist [mm] z.B.(a_i)+(b_i), [/mm] und was ist der Grenzwert davon?

Gruß v. Angela


            

Bezug
                
Bezug
Lineare Abb. [Folge]: lg vorschlag
Status: (Frage) beantwortet Status 
Datum: 17:14 Di 21.11.2006
Autor: ramok

wäre dies richtig?

Sei bi eine konvergente folge die gegen b konvergiert und ai ist eine konvergente folge die gegen a konvergiert, dann gilt

zu (i):
  (f(ai + bi)) = f(ai) + f(bi)
                   = a + b
                   = (f(ai) + f(bi))

zu (ii) sei s element von K(s ist ein skalar):
   f(s(ai)) = s * a
              = s * f(ai)

Stimt das jetzt so? Sollte ich besser noch den Limes für i gegen unendlich    
verwenden um die Konvegenz von ai gegen a und von bi gegen b zu verdeutlichen?

Stimtm das jetzt so??

Danke für mögl.  antwort.


Bezug
                        
Bezug
Lineare Abb. [Folge]: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Di 21.11.2006
Autor: leduart

Hallo ramok
> wäre dies richtig?
>  
> Sei bi eine konvergente folge die gegen b konvergiert und
> ai ist eine konvergente folge die gegen a konvergiert, dann
> gilt

was soll denn f sein?

> zu (i):
>    (f(ai + bi)) = f(ai) + f(bi)
>                     = a + b

und hier steht doch nur die Definition für lin. Abbildung.
Ich kann die Aufgabe wirklich nicht lesen! von wo nach wo geht denn die Abbildung? was sind die [mm] a_i [/mm] aus [mm] \IR [/mm] oder [mm] \IQ, [/mm]
soll es ne Abbildung von [mm] \IR^n [/mm] nach r sein?
Dies hier scheint mit keine Lösung  sondern ne Behauptung! Genauso für ii
Gruss leduart

>                     = (f(ai) + f(bi))
>  
> zu (ii) sei s element von K(s ist ein skalar):
>     f(s(ai)) = s * a
>                = s * f(ai)
>
> Stimt das jetzt so? Sollte ich besser noch den Limes für i
> gegen unendlich    
> verwenden um die Konvegenz von ai gegen a und von bi gegen
> b zu verdeutlichen?
>  
> Stimtm das jetzt so??
>  
> Danke für mögl.  antwort.
>  


Bezug
                                
Bezug
Lineare Abb. [Folge]: sry
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:47 Di 21.11.2006
Autor: ramok

sorry ich schreib die folge nochmal neu ab.

f = [mm] {(ai)i\inN | (ai)i\inN \in \IR^\IN ist konvergente Folge} -->\IR, [/mm]

[mm] (ai)i\inN [/mm] |----> [mm] \limes_{i\rightarrow\infty} [/mm] ai , [mm] \IR-Körper. [/mm]

ok ich hoffe ihr könnt mir jetzt weiterhelfen.

Bezug
                        
Bezug
Lineare Abb. [Folge]: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Di 21.11.2006
Autor: angela.h.b.


> wäre dies richtig?
>  
> Sei bi eine konvergente folge die gegen b konvergiert und
> ai ist eine konvergente folge die gegen a konvergiert, dann
> gilt
>  
> zu (i):
>    (f(ai + bi)) = f(ai) + f(bi)


Hallo,

wie leduart schon sagte:
Du verwendest hier die Behauptung, die Du doch erst zeigen willst. Das geht natürlich nicht.

Mach es so: seien [mm] (a_i) [/mm] und [mm] (b_i) [/mm] Folgen, welche gegen a bzw. b konvergieren.

Dann konvergiert [mm] (a_i)+(b_i)=(a_i+b_i) [/mm] lt. Analysis_Vorlesung gegen a+b.

Also ist [mm] f((a_i)+(b-i))=a+b= [/mm] ... ???

Ähnlich für Teil ii)

Gruß v. Angela

P.S.: Ich werde jetzt Deine Aufgabenstellung editieren, so daß man sie lesen kann. Bitte mach' Dich mit der Formeleingabe vertraut. Mit Rätselaufgaben von Dir werde ich mich in Zukunft nicht mehr beschäftigen.
Warum Du es dem Leser unnötig schwer? [mm] a_i [/mm] statt ai - das ist ein zusätzlicher Tastendruck.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de