www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Lineare Abb --> Matrix
Lineare Abb --> Matrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abb --> Matrix: Problem
Status: (Frage) beantwortet Status 
Datum: 13:43 Do 22.07.2010
Autor: Babybel73

Hallo zusammen

Folgende Aufgabe
Es sei V der reelle VR der Polynome x vom Grad kleiner gleich 2.
Bestimme die Eigenwerte und Eigenvektoren der folgenden linearen Selbsabbildung:
p(x) --> p(1-x)

Wie man EW und EV berechnet weiss ich, aber wie ich auf die folgende Matrix komme, verstehe ich nicht!
A = [mm] \pmat{ 1 & 1 & 1 \\ 0 & -1 & -2 \\ 0 & 0 & 1} [/mm]

Liebe grüsse Babybel


        
Bezug
Lineare Abb --> Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Do 22.07.2010
Autor: angela.h.b.


> Hallo zusammen
>  
> Folgende Aufgabe
>  Es sei V der reelle VR der Polynome x vom Grad kleiner
> gleich 2.
>  Bestimme die Eigenwerte und Eigenvektoren der folgenden
> linearen Selbsabbildung:
>  p(x) --> p(1-x)

>  
> Wie man EW und EV berechnet weiss ich, aber wie ich auf die
> folgende Matrix komme, verstehe ich nicht!
>  A = [mm]\pmat{ 1 & 1 & 1 \\ 0 & -1 & -2 \\ 0 & 0 & 1}[/mm]
>
>

Hallo,

es ist [mm] B:=(p_1(x):=1, p_2(x):=x, p_3(x):=x^2) [/mm] eine Basis von V.

Die Abbildung [mm] \varphi, [/mm] um die es geht, bildet ab von V nach V, und zwar so:
[mm] \varphi(p(x)):=p(1-x). [/mm]  

In den Saplten der Darstellungsmatrix von [mm] \varphi [/mm] stehen die Bilder der drei Basisvektoren von B in Koordinaten bzgl. B.

Nun schauen wir uns die Bilder der drei Basisvektoren an:

[mm] \varphi(p_1(x))=p_1(1-x)= [/mm] 1 [mm] =1*1+0*x+0*x^2=\vektor{1\\0\\0}_B [/mm]

[mm] \varphi(p_2(x))=p_2(1-x)=1-x= [/mm] ...*1+ ...*x+ [mm] ...*x^2= [/mm] ...

[mm] \varphi(p_3(x))= [/mm] ...

Versuch mal und schau, ob's paßt.

Gruß v. Angela


Bezug
                
Bezug
Lineare Abb --> Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Do 22.07.2010
Autor: Babybel73

Hallo Angela
Ich verstehe den folgenden Schritt nicht:
[mm] \varphi(p_1(x))=p_1(1-x)= [/mm] 1
Wieso ist [mm] p_1(1-x)= [/mm] 1 ??
Wieso ist es nicht [mm] p_1(1)=p_1(1-1)=0?? [/mm]

Liebe Grüsse


Bezug
                        
Bezug
Lineare Abb --> Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 Do 22.07.2010
Autor: schachuzipus

Hallo,

> Hallo Angela
>  Ich verstehe den folgenden Schritt nicht:
>  [mm]\varphi(p_1(x))=p_1(1-x)=[/mm] 1
> Wieso ist [mm]p_1(1-x)=[/mm] 1 ??
>  Wieso ist es nicht [mm]p_1(1)=p_1(1-1)=0??[/mm]

Na, weil es so definiert ist [mm] $p_1(x):=1$ [/mm]

Das ist eine Abb., die alles konstant auf 1 setzt.

In diesem Zusammenhang ist [mm] $p_1$ [/mm] das konstante Polynom identisch 1


>  
> Liebe Grüsse
>  

Gruß

schachuzipus

Bezug
                                
Bezug
Lineare Abb --> Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Do 22.07.2010
Autor: Babybel73

Hallo

Dann ist es bei
[mm] \varphi(p_3(x))=p_3(1-x)= 1^2-x^2 [/mm] ???

liebe Grüsse
Babybel

Bezug
                                        
Bezug
Lineare Abb --> Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:25 Do 22.07.2010
Autor: angela.h.b.


> Hallo
>  
> Dann ist es bei
>  [mm]\varphi(p_3(x))=p_3(1-x)= 1^2-x^2[/mm] ???


Hallo,

nein.

Es ist doch [mm] p_3(x)=x^2, [/mm] und bei [mm] p_3(1-x) [/mm] mußt Du nun das x von zuvor durch 1-x ersetzen.

Gruß v. Angela



Bezug
                                                
Bezug
Lineare Abb --> Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Fr 23.07.2010
Autor: Babybel73

Ahhaaaa!!

Ich muss also rechnen: [mm] (1-x)^2 [/mm] = [mm] x^2-2x+1 [/mm] !!
Vielen Dank!!!

liebe Grüsse
Babybel

Bezug
                                                        
Bezug
Lineare Abb --> Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:10 Fr 23.07.2010
Autor: angela.h.b.


> Ahhaaaa!!
>  
> Ich muss also rechnen: [mm](1-x)^2[/mm] = [mm]x^2-2x+1[/mm] !!

Genau.

Und der Koordinatenvektor ist dann [mm] \vektor{1\\-2\\1} [/mm]

Gruß v. Angela


>  Vielen Dank!!!
>  
> liebe Grüsse
> Babybel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de