www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Lineare Abbildung
Lineare Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:28 Sa 06.12.2003
Autor: Laura20

Hallo ihr Götter, ich bräuchte mal wieder ne kleine Unterstützung ;)
Folgende Aufgabe bereitet mir Kopfzerbrechen:
Es sei V ein zweidimensionaler K-Vektorraum,  f : V (pfeil) V sei linear. Zeigen Sie:
Es gibt Elemente a,b element von K, so dass für alle x element von V gilt:

f(f(x)) + af(x) + bx = 0

Hinweis: Behandeln Sie zunächst den Fall, dass ein x1 element von V existiert, so dass x1 und x2 :=f(x1 ) linear unabhängig sind und benutzen sie folgendes Lemma:
Sind f, g: V(pfeil)W zwei lineare Abbildungen und ist V=Span(x1 ,....,xn) und f(xi )=g(xi ) für i=1,...,n so gilt: f=g;
d.h. eine lineare abbildung ist schon durch ihre Werte auf einem Erzeugendemsystem festgelegt.

So weit so schlecht, denn ich hab keinen Plan wie das zu beweisen ist und dieses Lemma verwirrt mich mehr als das es mir hilft. Ich wär euch super dankbar wenn ihr mir helfen könntet,
liebe Grüße Laura.

        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Sa 06.12.2003
Autor: Stefan

Hallo Laura,

also, dann wollen wir die Aufgabe mal lösen. Eigentlich braucht man dafür aber keinen himmlischen Beistand. ;-)

1.Fall:  Es gibt ein [mm]x_1 \in V[/mm], so dass [mm]x_1[/mm] und [mm]x_2=f(x_1)[/mm] linear unabhängig sind

Dann können wir wie folgt argumentieren. Da [mm]x_1[/mm] und [mm]x_2=f(x_1)[/mm] nach Voraussetzung eine Basis von [mm]V[/mm] bilden, lässt sich [mm]-f(f(x_1)) \in V[/mm] als (eindeutige) Linearkombination der Basiselemente [mm]x_1[/mm] und [mm]f(x_1)[/mm] darstellen, d.h. es gibt Skalare [mm]a[/mm], [mm]b[/mm] mit

(*) [mm]a\, x_1 + b\, f(x_1) = -f(f(x_1))[/mm].

Wendet man nun auf beide Seiten dieser Gleichung (*) die Abbildung [mm]f[/mm] an, so folgt aus der Linearität von [mm]f[/mm]:

[mm]a\, f(x_1) + b\, f(f(x_1)) = -f(f(f(x_1)))[/mm].

Ersetzen wir nun [mm]f(x_1)[/mm] durch [mm]x_2[/mm]. so erhalten wir:

(**) [mm]a\, x_2 + b\, f(x_2) = -f(f(x_2))[/mm].

Wir betrachten nun die beiden (linearen!) Abbildungen:

[mm]g(x) \stackrel{\mbox{\scriptsize def}}{=} a\, f(x) + b\, f(f(x))[/mm]

und

[mm]h(x) \stackrel{\mbox{\scriptsize def}}{=} -f(f(x))[/mm].

Aus (*) und (**) folgt, dass [mm]g[/mm] und [mm]h[/mm] auf den beiden Basiselementen [mm]x_1[/mm] und [mm]x_2[/mm] übereinstimmen. Das bedeutet aber (siehe Lemma), dass sie auf ganz [mm]V[/mm] übereinstimmen, d.h. für alle [mm]x \in V[/mm] gilt:

[mm]g(x) = h(x)[/mm],

was gleichbedeutend mit

[mm]a\, x + b\, f(x) = - f(f(x))[/mm]

und damit der (zu zeigenden) Gleichheit

[mm]f(f(x)) + a\, x + b\, f(x) = 0[/mm].


2.Fall:  Für alle [mm]x \in V[/mm] sind [mm]x[/mm] und [mm]f(x)[/mm] linear abhängig.

Hier will ich erst einmal einen Vorschlag oder Ansatz von dir sehen. :-)

Liebe Grüße
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de