www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Lineare Abbildung
Lineare Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung: wie kann ich das lösen?
Status: (Frage) beantwortet Status 
Datum: 18:02 Sa 27.06.2009
Autor: oaken

Betrachten Sie die linearen Abbildung Φ: [mm] R^{3} \to R^{3}an, [/mm] die durch die Zuordnung

                [mm] \vektor{x\\y\\z} [/mm] = [mm] \vektor{x+\alpha y\\y+z\\x+z} [/mm]
definiert ist.
(a) Bestimmen Sie die Parameter , für die die Abbildung  invertierbar ist.
(b) Bestimmen Sie für dem Parameter [mm] \alpha [/mm] zu allen reellen Eigenwerten von den Eigenraum.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Sa 27.06.2009
Autor: kuemmelsche

Hallo,

die Forenregeln besagen, dass du eigene Lösungsansätze anführen sollst.

Meistens fällt mir beim aufschreiben meiner Lösungsansätze ins Forum die Lösung selber ein.

Wo hängts denn?

lg Kai

Bezug
                
Bezug
Lineare Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 Sa 27.06.2009
Autor: oaken

servus,

wenn ich verstehe net, wie ich das lösen muss...welche Lösungsweg soll ich schreiben?

> Hallo,
>  
> die Forenregeln besagen, dass du eigene Lösungsansätze
> anführen sollst.
>  
> Meistens fällt mir beim aufschreiben meiner Lösungsansätze
> ins Forum die Lösung selber ein.
>  
> Wo hängts denn?
>  
> lg Kai


Bezug
                        
Bezug
Lineare Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:49 Sa 27.06.2009
Autor: kuemmelsche

Du sollst uns nur mitteilen, was du bereits versucht hast, um diese Aufgabe zu lösen, und wo es bei deinem Ansatz hängt.

lg Kai

Bezug
        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Sa 27.06.2009
Autor: angela.h.b.


> Betrachten Sie die linearen Abbildung Φ: [mm]R^{3} \to R^{3}an,[/mm]
> die durch die Zuordnung
>  
> [mm]\vektor{x\\y\\z}[/mm] = [mm]\vektor{x+\alpha y\\y+z\\x+z}[/mm]
>  definiert
> ist.
>   (a) Bestimmen Sie die Parameter , für die die Abbildung  
> invertierbar ist.
>   (b) Bestimmen Sie für dem Parameter [mm]\alpha[/mm] zu allen
> reellen Eigenwerten von den Eigenraum.
>  

Hallo,

[willkommenmr].

Es wurde ja bereits erwähnt, daß wir von Dir Lösungsansätze  sehen wollen, nicht zuletzt auch deshalb, weil wir daran erkennen können, was in der Vorlesung behandelt wurde.

Der Aufgabenstellung entnehme ich, daß die darstellenden Matrizen von linearen Abbildungen bereits dran waren.

Beginne damit.
Stell' die darstellende Matrix von [mm] \Phi [/mm] auf.

Danach überlegst Du dann, für welche [mm] \alpha [/mm] die Matrix invertierbar ist. Wie bekommt man heraus, ob eine Matrix invertierbar ist?
Wenn die Matrix invertierbar ist, gilt dies auch für die zugehörige Abbildung.

Die andere Aufgabe gucken wir später an.
Du kannst ja schonmal nachschlagen, was ein Eigenwert ist, wie man ihn berechnet, was der Eigenraum ist, und wie man ihn berechnet.

Gruß v. Angela





Bezug
                
Bezug
Lineare Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:43 Sa 27.06.2009
Autor: oaken

Danke dir,

b) ist machbar für mich!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de