www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Lineare Abbildung
Lineare Abbildung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 08:51 Mi 22.02.2012
Autor: Steffen2361

Aufgabe
Hi, ich hätte folgende Frage zu lösen:

Beweise bzw. widerlege folgende Aussage

Für jede lineare Abbildung f: [mm] \IR^{4} \rightarrow \IR^{4} [/mm] und jeden Teilraum W von [mm] \IR^{4} [/mm] gilt dimW [mm] \ge [/mm] dim f(W)

Ok ich nehme an, dass diese Aussage wahr ist.

Da sich die Abbildung doch in den selben Vektorraum verläuft, also vom [mm] \IR^{4} [/mm] in den [mm] \IR^{4} [/mm] und zusätzlich einen Unteraum mit (in diesem Fall) höchster Dimension habe. So kann das Bild niemals größer sein.

Selbst wenn ich die Identiätsabbildung verwende, sehe ich das die Dimension gleich bleibt und somit meine Aussage wahr belibt.

Kann man das so sagen?

Danke euch :)

        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:03 Mi 22.02.2012
Autor: fred97


> Hi, ich hätte folgende Frage zu lösen:
>  
> Beweise bzw. widerlege folgende Aussage
>  
> Für jede lineare Abbildung f: [mm]\IR^{4} \rightarrow \IR^{4}[/mm]
> und jeden Teilraum W von [mm]\IR^{4}[/mm] gilt dimW [mm]\ge[/mm] dim f(W)
>  Ok ich nehme an, dass diese Aussage wahr ist.
>  
> Da sich die Abbildung doch in den selben Vektorraum
> verläuft, also vom [mm]\IR^{4}[/mm] in den [mm]\IR^{4}[/mm] und zusätzlich
> einen Unteraum mit (in diesem Fall) höchster Dimension
> habe. So kann das Bild niemals größer sein.
>
> Selbst wenn ich die Identiätsabbildung verwende, sehe ich
> das die Dimension gleich bleibt und somit meine Aussage
> wahr belibt.
>  
> Kann man das so sagen?


Nein. Das hat mit Mathematik nichts zu tun.

Schränke f auf W ein. Betrachte also

    f:W [mm] \to \IR^4. [/mm]

Wende nun den Dimensionssatz an.

FRED

>  
> Danke euch :)


Bezug
                
Bezug
Lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:22 Mi 22.02.2012
Autor: Steffen2361


>  
>
> Nein. Das hat mit Mathematik nichts zu tun.
>  
> Schränke f auf W ein. Betrachte also
>  
> f:W [mm]\to \IR^4.[/mm]
>  
> Wende nun den Dimensionssatz an.
>  

Ok mach ich:

Dimensionsatz lautet:

dimV = dim(Bild) + dim(Kern)

bei der Abbildung f:W [mm]\to \IR^4.[/mm] gilt nun:

dimW= 4 + dim(kern)

Da ich aber weiß das W auch dim 4 hat, so muss der Kern 0 haben.

Also:

4 = 4 + 0

Folgerung: Die Dimension von Bild kann nicht größer als 4 werden, somit ist die Aussage wahr






> FRED
>  >  
> > Danke euch :)
>  


Bezug
                        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:30 Mi 22.02.2012
Autor: fred97


> >  

> >
> > Nein. Das hat mit Mathematik nichts zu tun.
>  >  
> > Schränke f auf W ein. Betrachte also
>  >  
> > f:W [mm]\to \IR^4.[/mm]
>  >  
> > Wende nun den Dimensionssatz an.
>  >  
>
> Ok mach ich:
>  
> Dimensionsatz lautet:
>  
> dimV = dim(Bild) + dim(Kern)
>  
> bei der Abbildung f:W [mm]\to \IR^4.[/mm] gilt nun:
>  
> dimW= 4 + dim(kern)

Wieso ist dim Bild(f)=4   ???   Niemand sagt das !

>  
> Da ich aber weiß das W auch dim 4 hat,

Wer hat das gesagt ???

> so muss der Kern 0
> haben.
>
> Also:
>  
> 4 = 4 + 0
>  
> Folgerung: Die Dimension von Bild kann nicht größer als 4
> werden,

Das ist doch trivial, denn f(W) ist eine Teilmenge des [mm] \IR^4 [/mm]

> somit ist die Aussage wahr

Nicht so hastig !

Wir haben:

$dim ~W = dim~f(W) +dim~ [mm] kern(f_{|W})$ [/mm]

Bedenke, dass $dim [mm] ~kern(f_{|W}) \ge [/mm] 0$ ist.

FRED

>  
>
>
>
>
>
> > FRED
>  >  >  
> > > Danke euch :)
> >  

>  


Bezug
                                
Bezug
Lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:53 Mi 22.02.2012
Autor: Steffen2361


> > >  

> > >
> > > Nein. Das hat mit Mathematik nichts zu tun.
>  >  >  
> > > Schränke f auf W ein. Betrachte also
>  >  >  
> > > f:W [mm]\to \IR^4.[/mm]
>  >  >  
> > > Wende nun den Dimensionssatz an.
>  >  >  
> >
> > Ok mach ich:
>  >  
> > Dimensionsatz lautet:
>  >  
> > dimV = dim(Bild) + dim(Kern)
>  >  
> > bei der Abbildung f:W [mm]\to \IR^4.[/mm] gilt nun:
>  >  
> > dimW= 4 + dim(kern)
>  
> Wieso ist dim Bild(f)=4   ???   Niemand sagt das !


>  
> >  

> > Da ich aber weiß das W auch dim 4 hat,

Habe das in meiner Angabe verwechselt....

>
> Wer hat das gesagt ???
>
> > so muss der Kern 0
> > haben.
> >
> > Also:
>  >  
> > 4 = 4 + 0
>  >  
> > Folgerung: Die Dimension von Bild kann nicht größer als 4
> > werden,
>
> Das ist doch trivial, denn f(W) ist eine Teilmenge des
> [mm]\IR^4[/mm]
>  
> > somit ist die Aussage wahr
>  
> Nicht so hastig !
>  
> Wir haben:
>  
> [mm]dim ~W = dim~f(W) + dim kern(f_{|W})[/mm]
>  
> Bedenke, dass [mm]dim ~kern(f_{|W}) \ge 0[/mm] ist.

hmm aber da steht doch schon alles, was wir wollen oder?

Das die Dimension von W aus der Summe von $dim f(W)$ und dim~ [mm] kern(f_{|W}) [/mm] besteht. Somit kann $dim f(W)$ doch nicht größer sein als dimV oder?



>  
> FRED
>  >  
> >
> >
> >
> >
> >
> > > FRED
>  >  >  >  
> > > > Danke euch :)
> > >  

> >  

>  


Bezug
                                        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:55 Mi 22.02.2012
Autor: fred97


> > > >  

> > > >
> > > > Nein. Das hat mit Mathematik nichts zu tun.
>  >  >  >  
> > > > Schränke f auf W ein. Betrachte also
>  >  >  >  
> > > > f:W [mm]\to \IR^4.[/mm]
>  >  >  >  
> > > > Wende nun den Dimensionssatz an.
>  >  >  >  
> > >
> > > Ok mach ich:
>  >  >  
> > > Dimensionsatz lautet:
>  >  >  
> > > dimV = dim(Bild) + dim(Kern)
>  >  >  
> > > bei der Abbildung f:W [mm]\to \IR^4.[/mm] gilt nun:
>  >  >  
> > > dimW= 4 + dim(kern)
>  >  
> > Wieso ist dim Bild(f)=4   ???   Niemand sagt das !
>  
>
> >  

> > >  

> > > Da ich aber weiß das W auch dim 4 hat,
>
> Habe das in meiner Angabe verwechselt....
>  >

> > Wer hat das gesagt ???
> >
> > > so muss der Kern 0
> > > haben.
> > >
> > > Also:
>  >  >  
> > > 4 = 4 + 0
>  >  >  
> > > Folgerung: Die Dimension von Bild kann nicht größer als 4
> > > werden,
> >
> > Das ist doch trivial, denn f(W) ist eine Teilmenge des
> > [mm]\IR^4[/mm]
>  >  
> > > somit ist die Aussage wahr
>  >  
> > Nicht so hastig !
>  >  
> > Wir haben:
>  >  
> > [mm]dim ~W = dim~f(W) + dim kern(f_{|W})[/mm]
>  >  
> > Bedenke, dass [mm]dim ~kern(f_{|W}) \ge 0[/mm] ist.
>  
> hmm aber da steht doch schon alles, was wir wollen oder?
>  
> Das die Dimension von W aus der Summe von [mm]dim f(W)[/mm] und dim~
> [mm]kern(f_{|W})[/mm] besteht. Somit kann [mm]dim f(W)[/mm] doch nicht
> größer sein als dimV oder?

Ja

[mm]dim ~W = dim~f(W) + dim kern(f_{|W}) \ge dim~f(W) + 0= dim~f(W)[/mm]

FRED

>  
>
>
> >  

> > FRED
>  >  >  
> > >
> > >
> > >
> > >
> > >
> > > > FRED
>  >  >  >  >  
> > > > > Danke euch :)
> > > >  

> > >  

> >  

>  


Bezug
                                                
Bezug
Lineare Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:08 Mi 22.02.2012
Autor: Steffen2361


> > > > >  

> > > > >
> > > > > Nein. Das hat mit Mathematik nichts zu tun.
>  >  >  >  >  
> > > > > Schränke f auf W ein. Betrachte also
>  >  >  >  >  
> > > > > f:W [mm]\to \IR^4.[/mm]
>  >  >  >  >  
> > > > > Wende nun den Dimensionssatz an.
>  >  >  >  >  
> > > >
> > > > Ok mach ich:
>  >  >  >  
> > > > Dimensionsatz lautet:
>  >  >  >  
> > > > dimV = dim(Bild) + dim(Kern)
>  >  >  >  
> > > > bei der Abbildung f:W [mm]\to \IR^4.[/mm] gilt nun:
>  >  >  >  
> > > > dimW= 4 + dim(kern)
>  >  >  
> > > Wieso ist dim Bild(f)=4   ???   Niemand sagt das !
>  >  
> >
> > >  

> > > >  

> > > > Da ich aber weiß das W auch dim 4 hat,
> >
> > Habe das in meiner Angabe verwechselt....
>  >  >

> > > Wer hat das gesagt ???
> > >
> > > > so muss der Kern 0
> > > > haben.
> > > >
> > > > Also:
>  >  >  >  
> > > > 4 = 4 + 0
>  >  >  >  
> > > > Folgerung: Die Dimension von Bild kann nicht größer als 4
> > > > werden,
> > >
> > > Das ist doch trivial, denn f(W) ist eine Teilmenge des
> > > [mm]\IR^4[/mm]
>  >  >  
> > > > somit ist die Aussage wahr
>  >  >  
> > > Nicht so hastig !
>  >  >  
> > > Wir haben:
>  >  >  
> > > [mm]dim ~W = dim~f(W) + dim kern(f_{|W})[/mm]
>  >  >  
> > > Bedenke, dass [mm]dim ~kern(f_{|W}) \ge 0[/mm] ist.
>  >  
> > hmm aber da steht doch schon alles, was wir wollen oder?
>  >  
> > Das die Dimension von W aus der Summe von [mm]dim f(W)[/mm] und dim~
> > [mm]kern(f_{|W})[/mm] besteht. Somit kann [mm]dim f(W)[/mm] doch nicht
> > größer sein als dimV oder?
>  
> Ja
>  
> [mm]dim ~W = dim~f(W) + dim kern(f_{|W}) \ge dim~f(W) + 0= dim~f(W)[/mm]
>  

Ok danke dir
:)

> FRED
>  >  
> >
> >
> > >  

> > > FRED
>  >  >  >  
> > > >
> > > >
> > > >
> > > >
> > > >
> > > > > FRED
>  >  >  >  >  >  
> > > > > > Danke euch :)
> > > > >  

> > > >  

> > >  

> >  

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de