www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Lineare Abbildung im Dualraum
Lineare Abbildung im Dualraum < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung im Dualraum: Hilfe bei Beweis
Status: (Frage) beantwortet Status 
Datum: 16:58 Sa 19.03.2011
Autor: Morgainelefey

Aufgabe
Es sei V = [mm] \IR [/mm] als [mm] \IR-Vektorraum. [/mm] Weiter sei a,b [mm] \in \IR [/mm] fixiert. Wir definieren eine Abbildung [mm] \psi: [/mm] V* [mm] \to \IR [/mm] durch

[mm] \psi(\phi) [/mm] := [mm] \integral_{a}^{b}{\bruch{\phi(x)}{1+x^2}dx} [/mm]

a) [mm] Zeige:\psi \in [/mm] V**
b) Bestimme das [mm] \psi [/mm] entsprechende Elemente von V unter dem kanonischen Isomorphismus V [mm] \to [/mm] V** (V [mm] \cong [/mm] V**)

Hallo zusammen

Ich habe diese Aufgabe erhalten und stehe nun völlig auf dem Schlauch. Ich weiss einfach nicht wie ich den Beweis beginnen/schreiben soll.

Ich möchte wie folgt vorgehen.

zu a) 1. zeigen dass [mm] \psi :(\phi) \to \IR, \forall \phi \in [/mm] V*
      2. zeigen [mm] \psi [/mm] ist linear

zu b)Ja hier weiss ich jetzt gar nicht wie ich das machen kann

Es wäre echt super wenn mir jemand helfen könnte, bzw mir einen Anstoss geben könnte wie ich den Beweis beginnen soll.

Danke schon im Voraus



        
Bezug
Lineare Abbildung im Dualraum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Sa 19.03.2011
Autor: rainerS

Hallo!

> Es sei V = [mm]\IR[/mm] als [mm]\IR-Vektorraum.[/mm] Weiter sei a,b [mm]\in \IR[/mm]
> fixiert. Wir definieren eine Abbildung [mm]\psi:[/mm] V* [mm]\to \IR[/mm]
> durch
>  
> [mm]\psi(\phi)[/mm] := [mm]\integral_{a}^{b}{\bruch{\phi(x)}{1+x^2}dx}[/mm]
>  
> a) [mm]Zeige:\psi \in[/mm] V**
>  b) Bestimme das [mm]\psi[/mm] entsprechende Elemente von V unter
> dem kanonischen Isomorphismus [mm]V \to[/mm] [mm] V^{\ast\ast}[/mm] [/mm] (V [mm]\cong[/mm] V**)
>  Hallo zusammen
>  
> Ich habe diese Aufgabe erhalten und stehe nun völlig auf
> dem Schlauch. Ich weiss einfach nicht wie ich den Beweis
> beginnen/schreiben soll.
>
> Ich möchte wie folgt vorgehen.
>  
> zu a) 1. zeigen dass [mm]\psi :(\phi) \to \IR, \forall \phi \in V^\ast[/mm]

Richtig. Eigentlich muss dafür ja nur das Integral überhaupt definiert sein, denn das Ergebnis von

[mm]\integral_{a}^{b}{\bruch{\phi(x)}{1+x^2}dx}[/mm]

ist (per Definition des Integrals) eine reelle Zahl.

Wenn du dir jetzt noch überlegst, wie eine beliebige lineare Abbildung [mm] $\phi$ [/mm] aussieht, dann kannst du leicht zeigen, das das Integral immer definiert ist.

>        2. zeigen [mm]\psi[/mm] ist linear

Ja, weil das Integral linear ist.

> zu b)Ja hier weiss ich jetzt gar nicht wie ich das machen
> kann

Der kanonische Isomorphismus geht doch so: du ordnest der Zahl [mm] $v\in [/mm] V$ die Abbildung [mm] $\psi_v\in V^{\ast\ast}$ [/mm] zu, für die gilt:

  [mm] \psi_v(\phi) = \phi(v) [/mm] für alle linearen Abbildungen [mm] $\phi\in V^\ast$ [/mm]

Setze die allgemeine Form einer linearen Abbildung [mm] $\phi$ [/mm] ein, dann ist das eine einfache Rechnung.

Viele Grüße
   Rainer


Bezug
        
Bezug
Lineare Abbildung im Dualraum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Sa 19.03.2011
Autor: pelzig

Zu Teil b) beachte, dass für [mm]\phi\in V^\*[/mm] gilt [mm]\phi(x)=\phi(1)\cdot x[/mm] und damit
[mm]\int_a^b\frac{\phi(x)}{1+x^2}\ dx=\phi(1)\cdot\int_a^b\frac{x}{1+x^2}\ dx=\phi(\zeta)[/mm] mit [mm]\zeta:=\int_a^b\frac{x}{1+x^2}\ dx\in\IR[/mm].

Gruß, Robert





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de