www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Lineare Abbildunge
Lineare Abbildunge < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildunge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Sa 03.12.2005
Autor: Willi

Hey Leute,
brauche Hilfe bei folgender Aufgabe:

Wir betrachten die [mm] \IR-lineare [/mm] Abbildung F:  [mm] \IR^{3}\to\IR^{3}, (x1,x2,x3)\mapsto(x1+2x2+x3, [/mm] x2+x3, -x1+3x2+4x3). Man bestimme je eine Basis vom Kern und vom Bild von F.
[Tipp zum Kern: Man löse ein lineares Gleichungssystem. Tipp zum Bild: {F(1,0,0), F(0,1,0), F(0,0,1)} ist ein Erzeugendensystem des Bildes von F.]

Zur Basis vom Kern:
Kann ich jetzt die Vektoren (1,2,1), (0,1,1) und (-1,3,4) nehmen und damit ein LGS aufstellen um lineare Unabhängigkeit zu zeigen? Was kann ich hier zum Erzeugendensystem sagen?

Zur Basis vom Bild:
Das Erzeugendensystem ist im Tipp gegeben. Reicht es hier die Lineare Unabhängigkeit nachzuweisen (was mir zu einfach vorkommt, da das quasi offensichtlich ist)? Oder muss ich erklären warum {F(1,0,0), F(0,1,0), F(0,0,1)} ein Erzeugendensystem vom Bild von F ist? Wie mach ich das?

Kann man mir vielleicht auch mal ganz allgemein erklären, wie ich Basen vom Kern / Bild nachweisen soll? Hab das nicht ganz so verstanden.
DANKE.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Lineare Abbildunge: Antwort
Status: (Antwort) fertig Status 
Datum: 00:15 So 04.12.2005
Autor: Bastiane

Hallo!

> Wir betrachten die [mm]\IR-lineare[/mm] Abbildung F:  
> [mm]\IR^{3}\to\IR^{3}, (x1,x2,x3)\mapsto(x1+2x2+x3,[/mm] x2+x3,
> -x1+3x2+4x3). Man bestimme je eine Basis vom Kern und vom
> Bild von F.
> [Tipp zum Kern: Man löse ein lineares Gleichungssystem.
> Tipp zum Bild: {F(1,0,0), F(0,1,0), F(0,0,1)} ist ein
> Erzeugendensystem des Bildes von F.]
>  
> Zur Basis vom Kern:
>  Kann ich jetzt die Vektoren (1,2,1), (0,1,1) und (-1,3,4)
> nehmen und damit ein LGS aufstellen um lineare
> Unabhängigkeit zu zeigen? Was kann ich hier zum
> Erzeugendensystem sagen?

Wie kommst du auf genau diese Vektoren? Und was willst du hier mit linearer Abhängigkeit machen?

Also, allgemein bedeutet "Kern" ja alle Vektoren, die auf 0 abgebildet werden. Also alle x, für die gilt: F(x)=0. Damit hast du ein LGS:

[mm] x_1+2x_2+x_3=0 [/mm]
[mm] x_2+x_3=0 [/mm]
[mm] -x_1+3x_2+4x_3=0 [/mm]

Und die Lösung diese LGS ist eine Basis des Kerns.
  

> Zur Basis vom Bild:
>  Das Erzeugendensystem ist im Tipp gegeben. Reicht es hier
> die Lineare Unabhängigkeit nachzuweisen (was mir zu einfach
> vorkommt, da das quasi offensichtlich ist)? Oder muss ich
> erklären warum {F(1,0,0), F(0,1,0), F(0,0,1)} ein
> Erzeugendensystem vom Bild von F ist? Wie mach ich das?
>  
> Kann man mir vielleicht auch mal ganz allgemein erklären,
> wie ich Basen vom Kern / Bild nachweisen soll? Hab das
> nicht ganz so verstanden.
> DANKE.

Mmh - wie das beim Bild ist - will mir zu dieser späten Stunde irgendwie nicht mehr einfallen. :-/

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Lineare Abbildunge: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 So 04.12.2005
Autor: DaMenge

Hi Willi,

> Zur Basis vom Kern:
>  Kann ich jetzt die Vektoren (1,2,1), (0,1,1) und (-1,3,4)
> nehmen und damit ein LGS aufstellen um lineare
> Unabhängigkeit zu zeigen? Was kann ich hier zum
> Erzeugendensystem sagen?

wieso lineare Unabhängigkeit zeigen? Das lineare Gleichungssystem (das Bastiane ja schon gegeben hat) beschreibt doch den Kern - genauer : die Lösungen dessen sind alle Vektoren aus dem Kern.

> Zur Basis vom Bild:
>  Das Erzeugendensystem ist im Tipp gegeben. Reicht es hier
> die Lineare Unabhängigkeit nachzuweisen (was mir zu einfach
> vorkommt, da das quasi offensichtlich ist)? Oder muss ich
> erklären warum {F(1,0,0), F(0,1,0), F(0,0,1)} ein
> Erzeugendensystem vom Bild von F ist? Wie mach ich das?


Offensichtlich ? Dass die drei angegebenen Vektoren ein Erzeugendensystem des Bildes sind ist klar, denn es ist eine Basis des [mm] $\IR^3$, [/mm] aber das Bild ist doch nur ein Teilraum dessen, d.h. dies ist (in diesem Fall: offensichtlich) keine Basis des Bildes..

> Kann man mir vielleicht auch mal ganz allgemein erklären,
> wie ich Basen vom Kern / Bild nachweisen soll? Hab das
> nicht ganz so verstanden.
> DANKE.

schau doch mal folgendes:
MBWie man den Kern einer linearen Abbildung bestimmt
und
MBWie man das Bild einer linearen Abbildung bestimmt

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de