www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Lineare Abhängigkeit
Lineare Abhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Do 01.12.2011
Autor: unibasel

Aufgabe
Zeige oder widerlege: Die Vektoren (1,1,1), (1,1,0), (1,0,0) [mm] \in \IQ^{3} [/mm] spannen den ganzen [mm] \IQ^{3} [/mm] auf.

Guten Abend.

Also ich weiss nicht genau wie ich anfangen soll.

Was ich dazu weiss, ist folgendes:
Die folgenden Vektoren sind voneinander linear nicht abhängig, denn nur so spannen sie den ganzen [mm] \IQ^{3} [/mm] auf.

Nun wie kann ich das zeigen?
Ich habe mitbekommen, dass diese eine Gleichung erfüllen müssen?

also irgendwie in der Form:
[mm] \mu(1,1,1)+\lambda(1,1,0)+\delta(1,0,0)=0 [/mm]

Oder liege ich da völlig daneben? Und wie kann ich denn dies widerlegen?

Danke schonmal.
Viele Grüsse :)

        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Do 01.12.2011
Autor: MathePower

Hallo unibasel,

> Zeige oder widerlege: Die Vektoren (1,1,1), (1,1,0),
> (1,0,0) [mm]\in \IQ^{3}[/mm] spannen den ganzen [mm]\IQ^{3}[/mm] auf.
>  Guten Abend.
>  
> Also ich weiss nicht genau wie ich anfangen soll.
>  
> Was ich dazu weiss, ist folgendes:
>  Die folgenden Vektoren sind voneinander linear nicht
> abhängig, denn nur so spannen sie den ganzen [mm]\IQ^{3}[/mm] auf.
>  
> Nun wie kann ich das zeigen?
>  Ich habe mitbekommen, dass diese eine Gleichung erfüllen
> müssen?

>


Ja.

  

> also irgendwie in der Form:
>  [mm]\mu(1,1,1)+\lambda(1,1,0)+\delta(1,0,0)=0[/mm]
>  


Das ist richtig.


> Oder liege ich da völlig daneben? Und wie kann ich denn
> dies widerlegen?

>


Bestimme aus vorstehender Gleichung die Koeffizienten [mm]\mu,,\lambda,\delta[/mm]  

Diese müssen alle 0 sein, um den ganzen [mm]\IQ^{3}[/mm] aufzuspannen.


> Danke schonmal.
> Viele Grüsse :)


Gruss
MathePower

Bezug
                
Bezug
Lineare Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Do 01.12.2011
Autor: unibasel

In diesem Fall gilt also [mm] \mu [/mm] = [mm] \lambda [/mm] = [mm] \delta [/mm]
= (1,0,0) ?

Ist das alles?

Und danke für die Antwort ;)

Bezug
                        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Do 01.12.2011
Autor: MathePower

Hallo unibasel,

> In diesem Fall gilt also [mm]\mu[/mm] = [mm]\lambda[/mm] = [mm]\delta[/mm]
> = (1,0,0) ?
>  
> Ist das alles?
>  


[mm]\mu, \lambda, \delta[/mm] müssen Zahlen sein.


> Und danke für die Antwort ;)


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de