www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Lineare Abhängigkeit in R3
Lineare Abhängigkeit in R3 < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abhängigkeit in R3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 Mo 19.12.2011
Autor: Nicole1989

Hallo zusammen

Ich habe eine Frage und zwar weiss ich, dass man 3 Vektoren im R3 mittels folgneder Gleichung überprüfen kann, ob sie untereinander linear abhängig sind oder nicht.

[mm] \lambda*\vektor{x \\ y \\ z} [/mm] + [mm] \lambda*\vektor{x \\ y \\ z} [/mm] + [mm] \lambda*\vektor{x \\ y \\ z} [/mm] = [mm] \vektor{0 \\ 0 \\ 0} [/mm]

Aber irgendwie wurde auch gesagt, es sei nicht wirklich zulässig das folgende zu machen und zu sagen, die drei seien linear abhängig oder nicht:

[mm] \lambda*\vektor{x \\ y \\ z} [/mm] + [mm] \lambda*\vektor{x \\ y \\ z} [/mm] = [mm] \lambda*\vektor{x \\ y \\ z} [/mm]

Irgendwie war die Begründung, dass es sein kann, dass sich die Vektoren untereinander als Linearkombination darstellen lassen, aber das nicht heissen muss, dass alle drei voneinander linear abhängig sind... oder so ähnlich.
Aber wenn ich die 2 Gleichungen anschaue, dann hat man ja nur einen Vektor auf die andere Seite genommen... also für mich ändert es nichts an der Bedeutung...

Ich hoffe, ihr wisst was ich meine...vielleicht kann mir ja jemand ein  Beispiel dazu machen. Falls ihr nicht versteht, was ich meine, bitte nachfragen.

Vielen Dank.

Liebe Grüsse

Nicole



        
Bezug
Lineare Abhängigkeit in R3: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Mo 19.12.2011
Autor: schachuzipus

Hallo Nicole1989,


> Hallo zusammen
>  
> Ich habe eine Frage und zwar weiss ich, dass man 3 Vektoren
> im R3 mittels folgneder Gleichung überprüfen kann, ob sie
> untereinander linear abhängig sind oder nicht.
>  
> [mm]\lambda*\vektor{x \\ y \\ z}[/mm] + [mm]\lambda*\vektor{x \\ y \\ z}[/mm]  + [mm]\lambda*\vektor{x \\ y \\ z}[/mm] = [mm]\vektor{0 \\ 0 \\ 0}[/mm]

Hää?

Dreimal derselbe Vektor und dreimal derselbe Skalar?

Richtig:

[mm]\lambda\cdot{}\vektor{x_1\\ y_1\\ z_1}+\mu\cdot{}\vektor{x_2\\ y_2\\ z_2}+\nu\cdot{}\vektor{x_3\\ y_3\\ z_3}=\vektor{0\\ 0\\ 0}[/mm]

Damit prüfst du, ob die drei Vektoren [mm]\vektor{x_1\\ y_1\\ z_1}, \vektor{x_2\\ y_2\\ z_2}, \vektor{x_3\\ y_3\\ z_3}[/mm] linear unabhängig sind oder nicht.

Ergibt diese LK des Nullvektors nur die triviale Lösung [mm]\lambda=\mu=\nu=0[/mm], so sind die Vektoren linear unabh., ansonsten linear abhängig.



>  
> Aber irgendwie wurde auch gesagt, es sei nicht wirklich
> zulässig das folgende zu machen und zu sagen, die drei
> seien linear abhängig oder nicht:
>  
> [mm]\lambda*\vektor{x \\ y \\ z}[/mm] + [mm]\lambda*\vektor{x \\ y \\ z}[/mm]  = [mm]\lambda*\vektor{x \\ y \\ z}[/mm]

Das ist sowieso nicht "zulässig", weil du schon oben die falsche LK angesetzt hast.


Und ob du nun [mm]\lambda\cdot{}\vektor{x_1\\ y_1\\ z_1}+\mu\cdot{}\vektor{x_2\\ y_2\\ z_2}+\nu\cdot{}\vektor{x_3\\ y_3\\ z_3}=\vektor{0\\ 0\\ 0}[/mm] oder

[mm]\lambda\cdot{}\vektor{x_1\\ y_1\\ z_1}+\mu\cdot{}\vektor{x_2\\ y_2\\ z_2}=\tilde\nu\cdot{}\vektor{x_3\\ y_3\\ z_3}[/mm]

prüfst, ist doch einerlei ...

Das ist doch nur äquivalent umgestellt, wobei das "neue" [mm]\tilde\nu[/mm] gerade dem "alten" [mm]-\nu[/mm] entspricht...

>  
> Irgendwie war die Begründung, dass es sein kann, dass sich
> die Vektoren untereinander als Linearkombination darstellen
> lassen, aber das nicht heissen muss, dass alle drei
> voneinander linear abhängig sind... oder so ähnlich.

Das ist ja sehr vage ...

>  Aber wenn ich die 2 Gleichungen anschaue, dann hat man ja
> nur einen Vektor auf die andere Seite genommen... also für
> mich ändert es nichts an der Bedeutung...

Eben! (mit der richtigen Ausgangs-LK)

>  
> Ich hoffe, ihr wisst was ich meine...vielleicht kann mir ja
> jemand ein  Beispiel dazu machen. Falls ihr nicht versteht,
> was ich meine, bitte nachfragen.
>  
> Vielen Dank.
>  
> Liebe Grüsse
>
> Nicole
>  
>  

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de