www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lineare Diff.gl.systeme
Lineare Diff.gl.systeme < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Diff.gl.systeme: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:43 Fr 21.09.2012
Autor: Semimathematiker

Aufgabe
Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems

Geg: y´_{1} = [mm] 3y_{1} [/mm] + [mm] 4y_{2} [/mm]  ; y´_{2} = [mm] 4y_{1}-3y_{2} [/mm]


Erst mal meine Berechnung bis zum Problem:

1) Bestimme Matrixform:

[mm] y´=\vektor{y´{1} \\ y´{2}}´= \pmat{ 3 & 4 \\ 4 & -3 }\vektor{y{1} \\ y{2}} [/mm] ; y, [mm] (y{1},y{2})^T [/mm] (nicht nach Mat.) sind gestrichen, wird aber nicht vom Programm angenommen.

2) EWs von A:

[mm] P_{A}(\lambda) [/mm] = [mm] det(A-\lambda*E) [/mm] = [mm] (\lambda+5)(\lambda-5) \Rightarrow \lambda_{1}=5 [/mm] , [mm] \lambda_{2} [/mm] = - 5

3) Berechne Eigenbasis (aus EVs):

(1) [mm] ker(A-\lambda_{1}E) \rightarrow [/mm] y°_{1} = 2y°_{2}
Setze y°_{2} = 1 [mm] \Rightarrow [/mm] y°_{1} = 2
(2) [mm] ker(A-\lambda_{2}E) \rightarrow [/mm] y°°_{1} = -y°°_{2}
Setze y°°_{1} = 1 [mm] \Rightarrow [/mm] y°°_{2} = -2

[mm] (1),(2)\Rightarrow \parallel y°\parallel [/mm] := [mm] b_{1} [/mm] := [mm] \bruch{1}{\wurzel{5}} \vektor{2 \\ 1} [/mm] , [mm] \parallel y°°\parallel [/mm] := [mm] b_{2} [/mm] := [mm] \bruch{1}{\wurzel{5}} \vektor{1 \\ -2} [/mm] ,

[mm] \Rightarrow [/mm] B = [mm] \bruch{1}{\wurzel{5}}\pmat{ 2 & 1 \\ 1 & -2 } [/mm]

Frage:
Die Eigenbasis aus A ist eine normierte Basis des Vektorraums, die aber nicht die Abbildung von A hat. Deshalb muss ich jetzt y = [mm] (y_{1},y_{2})^T [/mm] durch diese Basis B ersetzen und eine weitere Abbildungsvorschrift finden so dass dann gilt: [mm] y_{1}(x)´ [/mm] = [mm] y_{1}´(u(x))gestrichen [/mm] , [mm] y_{2}(x)´ [/mm] = [mm] y_{2}´(u(x))gestrichen [/mm] ?? Dabei helfen mir die Eigenwerte, die die Koeffizienten der Exponenten sind?

Vielen Dank.

        
Bezug
Lineare Diff.gl.systeme: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 Fr 21.09.2012
Autor: fred97


> Bestimmen Sie die allgemeine Lösung des
> Differentialgleichungssystems
>  
> Geg: y´_{1} = [mm]3y_{1}[/mm] + [mm]4y_{2}[/mm]  ; y´_{2} = [mm]4y_{1}-3y_{2}[/mm]
>  
> Erst mal meine Berechnung bis zum Problem:
>  
> 1) Bestimme Matrixform:
>  
> [mm]y´=\vektor{y´{1} \\ y´{2}}´= \pmat{ 3 & 4 \\ 4 & -3 }\vektor{y{1} \\ y{2}}[/mm]
> ; y, [mm](y{1},y{2})^T[/mm] (nicht nach Mat.) sind gestrichen, wird
> aber nicht vom Programm angenommen.
>  
> 2) EWs von A:
>  
> [mm]P_{A}(\lambda)[/mm] = [mm]det(A-\lambda*E)[/mm] = [mm](\lambda+5)(\lambda-5) \Rightarrow \lambda_{1}=5[/mm]
> , [mm]\lambda_{2}[/mm] = - 5
>  
> 3) Berechne Eigenbasis (aus EVs):
>  
> (1) [mm]ker(A-\lambda_{1}E) \rightarrow[/mm] y°_{1} = 2y°_{2}
>  Setze y°_{2} = 1 [mm]\Rightarrow[/mm] y°_{1} = 2
>  (2) [mm]ker(A-\lambda_{2}E) \rightarrow[/mm] y°°_{1} =
> -y°°_{2}
>  Setze y°°_{1} = 1 [mm]\Rightarrow[/mm] y°°_{2} = -2
>  
> [mm](1),(2)\Rightarrow \parallel y°\parallel[/mm] := [mm]b_{1}[/mm] :=
> [mm]\bruch{1}{\wurzel{5}} \vektor{2 \\ 1}[/mm] , [mm]\parallel y°°\parallel[/mm]
> := [mm]b_{2}[/mm] := [mm]\bruch{1}{\wurzel{5}} \vektor{1 \\ -2}[/mm] ,

Wozu diese Normierung ?

>  
> [mm]\Rightarrow[/mm] B = [mm]\bruch{1}{\wurzel{5}}\pmat{ 2 & 1 \\ 1 & -2 }[/mm]


Was hats mit dieser Matrix auf sich ?


>  
> Frage:
>  Die Eigenbasis aus A ist eine normierte Basis des
> Vektorraums, die aber nicht die Abbildung von A hat.



Dieser Satz ist nicht zu verstehen !

> Deshalb muss ich jetzt y = [mm](y_{1},y_{2})^T[/mm] durch diese
> Basis B ersetzen und eine weitere Abbildungsvorschrift
> finden so dass dann gilt: [mm]y_{1}(x)´[/mm] =
> [mm]y_{1}´(u(x))gestrichen[/mm] , [mm]y_{2}(x)´[/mm] =
> [mm]y_{2}´(u(x))gestrichen[/mm] ?? Dabei helfen mir die Eigenwerte,
> die die Koeffizienten der Exponenten sind?

Ich verstehe kein Wort  ?!

Die Aufgabe lautet doch:

" Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems ... "

Du hast Doch alles , was Du brauchst. Die allgemeine Lösung lautet:

[mm] \vektor{y_1(x) \\ y_2(x)}=C_1\vektor{2 \\ 1}e^{5x}+C_2\vektor{1 \\ -2}e^{-5x} [/mm]

FRED

>  
> Vielen Dank.


Bezug
                
Bezug
Lineare Diff.gl.systeme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:36 Fr 21.09.2012
Autor: Semimathematiker

Vielen Dank für die schnelle und hilfreiche Antwort.

Das "unverständliche" soll bedeuten, dass ich eine verschachtelte Funktion habe.

Ich hab zu dieser Aufgabe eine Lösung in der das so gemacht wird. Zum Schluss geht der Übungsgruppenleiter her und setzt [mm] (y1,y2)^T [/mm] mit Bu = [mm] B(u_{1},u_{2})^T [/mm] = [mm] B(s_{1}*e^5x [/mm] , [mm] s_{2}*e^-5x)^T [/mm] gleich und bildet:

[mm] (y_{1},y_{2})^T [/mm] = [mm] B(u_{1} [/mm] , [mm] u_{2})^T [/mm] = [mm] \bruch{1}{\wurzel{5}}\pmat{ 2 & 1 \\ 1 & -2 }(2s_{1}e^5x [/mm] + [mm] s_{2}e^-5x [/mm] , [mm] s_{1}e^5x [/mm] - [mm] 2s_{2}e^-5x )^T [/mm]

Ich denke, genau deshalb wird es normiert.
Sind wir mit s1, s2 [mm] \in \IR [/mm] bereits in der speziellen Lsg?
[mm] C_{1}, C_{2} [/mm] sind bei dir dann Matrizzen, oder? Kannst du die auch ermitteln?
Vielen Dank.

Bezug
                        
Bezug
Lineare Diff.gl.systeme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:44 Fr 21.09.2012
Autor: Semimathematiker

Danke Fred, hab´s verstanden. c ist ne Konstante.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de