www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lineare Differentialgleichung
Lineare Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Differentialgleichung: Verständnisproblem zur Lösung
Status: (Frage) beantwortet Status 
Datum: 15:28 So 16.02.2014
Autor: FelixxDE

Aufgabe
x'_{1}(t) = [mm] -4x_{1}(t) [/mm] - [mm] 7x_{2}(t) [/mm]
x'_{2}(t) = [mm] 2x_{1}(t) [/mm] - [mm] 5x_{2}(t) [/mm]

Ich habe einen Lösungsvorschlag meines PRofs, den ich leider nicht ganz nachvollziehen kann. Mich irritieren irgendwie die (t)-Funktionen.

Das sind für mich 2 homogene lineare Differentialgleichungen.
Das ist eine DGL der 1. Ordnung.

Eine DGL 1. Ordnung hat die Form y'(x) = h(x)*y(x)+f(x).

Aufgabe: x'_{1}(t) = [mm] -4x_{1}(t) [/mm] - [mm] 7x_{2}(t) [/mm]

1. Ich muss eine Lösung raten. => Mein erstes Prob. ICh weiß nicht wie ich hier was raten soll.
2. Formel zur Lösung für homogene DGL nutzen: x'_{1}(t) = c*e^-A(x), wobei -A(x) ein Integral darstellt.
3. Berechnung der Lösung.

Ich bin total verwirrt und weiß auch gar nicht, ob ich eine rein homogene DGL habe... DAs kann doch nicht so schwer sein :-(

x'_{1}(t) = [mm] -4x_{1}(t) [/mm] - [mm] 7x_{2}(t) [/mm] | -> die Therme müssten doch alle auf die linke Seite ...
x'_{1}(t) + [mm] 4x_{1}(t) [/mm] + [mm] 7x_{2}(t) [/mm] = 0 |

Hier ist schon Schluss. Wenn ich x' ableiten würde, würde ja 1 stehen bleiben.
Wenn das doch eine DGL 2. Ordnung wäre, dann wüsste ich weiter zu machen, aber die einfachere 1. schaffe ich nicht.
Wie gehe ich mit [mm] x_{1} [/mm] und [mm] x_{2} [/mm] um? Die sind doch unterschiedlich.


Ich bin für jeden Tipp dankbar. Danke und viele GRüße

Lösungsvorschlag des Profs:

Eigenwerte der Systemmatrix sind: [mm] \lambda_{1}=3 [/mm] und [mm] \lambda_{2}=-2 [/mm] ,(ausrechnen über das charakteristische Polynom). Die zugehörigen Eigenvektoren sind [mm] v_{1}=(1,-1)^T [/mm] und [mm] v_{2}=(7,-2)^T. [/mm] Somit ergibt sich als allgemeine Lösung:

[mm] \vektor{x_{1}(0) \\ x_{2}(0)}(t) [/mm] = [mm] c_{1}\vektor{1 \\ -1} e^{3t}+c_{2}\vektor{7 \\ -1} e^{-2t} [/mm]

[mm] c_{1} [/mm] und [mm] c_{2} [/mm] sind Elemente der Reelen Zahlen.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 So 16.02.2014
Autor: MathePower

Hallo FelixxDE,


[willkommenmr]


> x'_{1}(t) = [mm]-4x_{1}(t)[/mm] - [mm]7x_{2}(t)[/mm]
>  x'_{2}(t) = [mm]2x_{1}(t)[/mm] - [mm]5x_{2}(t)[/mm]
>  Ich habe einen Lösungsvorschlag meines PRofs, den ich
> leider nicht ganz nachvollziehen kann. Mich irritieren
> irgendwie die (t)-Funktionen.
>  
> Das sind für mich 2 homogene lineare
> Differentialgleichungen.
> Das ist eine DGL der 1. Ordnung.
>  
> Eine DGL 1. Ordnung hat die Form y'(x) = h(x)*y(x)+f(x).
>  
> Aufgabe: x'_{1}(t) = [mm]-4x_{1}(t)[/mm] - [mm]7x_{2}(t)[/mm]
>  
> 1. Ich muss eine Lösung raten. => Mein erstes Prob. ICh
> weiß nicht wie ich hier was raten soll.
>  2. Formel zur Lösung für homogene DGL nutzen: x'_{1}(t)
> = c*e^-A(x), wobei -A(x) ein Integral darstellt.
>  3. Berechnung der Lösung.
>  
> Ich bin total verwirrt und weiß auch gar nicht, ob ich
> eine rein homogene DGL habe... DAs kann doch nicht so
> schwer sein :-(
>  
> x'_{1}(t) = [mm]-4x_{1}(t)[/mm] - [mm]7x_{2}(t)[/mm] | -> die Therme müssten
> doch alle auf die linke Seite ...
>  x'_{1}(t) + [mm]4x_{1}(t)[/mm] + [mm]7x_{2}(t)[/mm] = 0 |
>
> Hier ist schon Schluss. Wenn ich x' ableiten würde, würde
> ja 1 stehen bleiben.
>  Wenn das doch eine DGL 2. Ordnung wäre, dann wüsste ich
> weiter zu machen, aber die einfachere 1. schaffe ich
> nicht.
>  Wie gehe ich mit [mm]x_{1}[/mm] und [mm]x_{2}[/mm] um? Die sind doch
> unterschiedlich.
>  


[mm]x_{1}[/mm] und [mm]x_{2}[/mm] sind die gesuchten Funktionen,
den 2 Differentialgleichungen genügen.

Hier handelt es sich um ein lineares homogenes DGL-System.


>
> Ich bin für jeden Tipp dankbar. Danke und viele GRüße
>  
> Lösungsvorschlag des Profs:
>  
> Eigenwerte der Systemmatrix sind: [mm]\lambda_{1}=3[/mm] und
> [mm]\lambda_{2}=-2[/mm] ,(ausrechnen über das charakteristische
> Polynom). Die zugehörigen Eigenvektoren sind


Aus den gegebenen Gleichungen und der zugehörigen Systemmatrix
ergeben sich andere Eigenwerte, die soger komplex sind.

Poste daher die richtigen Gleichungen.


> [mm]v_{1}=(1,-1)^T[/mm] und [mm]v_{2}=(7,-2)^T.[/mm] Somit ergibt sich als
> allgemeine Lösung:
>  
> [mm]\vektor{x_{1}(0) \\ x_{2}(0)}(t)[/mm] = [mm]c_{1}\vektor{1 \\ -1} e^{3t}+c_{2}\vektor{7 \\ -1} e^{-2t}[/mm]
>  
> [mm]c_{1}[/mm] und [mm]c_{2}[/mm] sind Elemente der Reelen Zahlen.
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de