www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lineare Differentialgleichung
Lineare Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 Mo 12.05.2014
Autor: Sandra_161

[mm] x'=\pmat{ 2+a & a \\ 0 & 1+a } [/mm] *x + [mm] e^t \vektor{1 \\ 1 } [/mm]

Mit [mm] a\in \IR [/mm]

Nun soll ich die allgemeine Lösung der Form x(t) = [mm] e^{t} \vektor{a\\b} [/mm] bestimmen.
Könnt ihr mir beim Ansatz weiterhelfen?  Muss ich zunächst die Eigenwerte ausrechnen?

Und däim zweiten Teil muss ich für [mm] a\not= [/mm] 0 die eindeutige Lösung mit x(0)=0 bestimmen.


Bedanke mich schon im Voraus!!

        
Bezug
Lineare Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 Mo 12.05.2014
Autor: fred97


> [mm]x'=\pmat{ 2+a & a \\ 0 & 1+a }[/mm] *x + [mm]e^t \vektor{1 \\ 1 }[/mm]
>
> Mit [mm]a\in \IR[/mm]
>  
> Nun soll ich die allgemeine Lösung der Form x(t) = [mm]e^{t} \vektor{a\\b}[/mm]
> bestimmen.
> Könnt ihr mir beim Ansatz weiterhelfen?  Muss ich
> zunächst die Eigenwerte ausrechnen?
>
> Und däim zweiten Teil muss ich für [mm]a\not=[/mm] 0 die
> eindeutige Lösung mit x(0)=0 bestimmen.
>
>
> Bedanke mich schon im Voraus!!  

Bestimme zunächst die allgemeine Lösung des homogenen Systems

[mm] x'=\pmat{ 2+a & a \\ 0 & 1+a }*x [/mm]

Dafür brauchst Du die Eigenwerte obiger Matrix.

Dann bestimme eine spezielle Lösung des inhomogen Systems.

Wie lautete dann die allgemeine Lösung des inhomogenen Systems ?

FRED


Bezug
                
Bezug
Lineare Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Mo 12.05.2014
Autor: Sandra_161

Die Eigenwerte der Matrix sind  
[mm] \lambda1 [/mm] = (2+a) und [mm] \lambda2 [/mm] = (1+a)


Und kannst du mir den nächsten Schritt näher erläutern?

Bezug
                        
Bezug
Lineare Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Mo 12.05.2014
Autor: leduart

Hallo
der nächste Schritt sind die Eigenvektoren. warum siehst du nicht mal in dein skript oder buch?
Gruß leduart

Bezug
                                
Bezug
Lineare Differentialgleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:41 Mo 12.05.2014
Autor: Sandra_161

Das mit den Eigenvektoren war mir klar, aber danke für deine Antwort!! Ich meinte aber den Schritt wo man alle Lösungen bestimmen muss.


Bezug
                                        
Bezug
Lineare Differentialgleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 14.05.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de