www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Lineare Funktion
Lineare Funktion < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Funktion: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 14:24 Mo 09.02.2009
Autor: Gencerz24

Aufgabe
Gegeben ist die Funktion f :
f(x) - [mm] x^{2} [/mm] - 2x - 3
Berrechne die Schnittpunkte mit den Achsen und den Scheitelpunkt Zeichne den Graphen der Funktion.

Also den Schnittpunkt habe ich  y= -3, und x1 = 3 , und x2= - 1
Jetzt meine Farge wie rechne ich den Scheitelpunkt aus ?

        
Bezug
Lineare Funktion: Scheitelpunkt
Status: (Antwort) fertig Status 
Datum: 14:28 Mo 09.02.2009
Autor: Roadrunner

Hallo Gencerz!


Wenn zwei Nullstellen vorhanden sind, liegt der x-Wert des Scheitelpunktes genau in der Mitte zwischen den beiden Nullstellen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Lineare Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 Mo 09.02.2009
Autor: Gencerz24

Danke : )
aber was heißt das bei meiner Aufgabe ?
sorry für die dumme frage

Bezug
                        
Bezug
Lineare Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Mo 09.02.2009
Autor: Teufel

Hallo!

Ach was, die Frage ist nicht dumm. Außerdem sind wir ja zum Helfen hier.
Beispiel: Hat deine Parabel Nullstellen bei [mm] x_1=1 [/mm] und [mm] x_2=3, [/mm] so liegt der Scheitelpunkt bei [mm] x_S=2. [/mm] Die y-Koordinate dazu könntest du ja dann leicht ausrechnen.

Den "Mittelpunkt" (besser: Mittelwert, arithmetisches Mittel) kannst du in deinem Fall immer aus ausrechnen:

[mm] x_S=\bruch{x_1+x_2}{2}. [/mm]
Oder in Worten: Beide Nullstellen addieren und durch 2 teilen.

Außerdem: Das ist eine quadratische Funktion! Keine lineare. :)
Wegen dem x².

[anon] Teufel

Bezug
                                
Bezug
Lineare Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 Mo 09.02.2009
Autor: Gencerz24

also wäre bei mir das ergebnis dann = 1 ?
also ich habs so gemacht:
3+ (-1) : 2 = 1

stimmt das ?

Bezug
                                        
Bezug
Lineare Funktion: richtig
Status: (Antwort) fertig Status 
Datum: 14:47 Mo 09.02.2009
Autor: Roadrunner

Hallo Gencerz!


Das stimmt. Nun noch den zugehörigen Funktionswert berechnen.


Gruß vom
Roadrunner


Bezug
                                                
Bezug
Lineare Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Mo 09.02.2009
Autor: Gencerz24

Und wie geht das ? : )

hehe erstmal danke für alles

Bezug
                                                        
Bezug
Lineare Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Mo 09.02.2009
Autor: schachuzipus

Hallo Gencerz24,

> Und wie geht das ? : )

Hmm, der Scheitelpunkt hat die Koordinaten [mm] $S=(\underbrace{x_s}_{x}/\underbrace{f(x_s)}_{y})$ [/mm]

Also setze [mm] $x_s$ [/mm] in die Abbildungsvorschrift für f ein ...

>  
> hehe erstmal danke für alles


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de