www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Lineare Funktion
Lineare Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Funktion: Gleichung
Status: (Frage) beantwortet Status 
Datum: 12:19 So 04.09.2005
Autor: Lambda

Hi! Ich habe ein paar Fragen zu einer doch recht bescheuerten Aufgabe und hoffe, dass mir jemand dabei helfen kann.

Nun die Aufgabe:

Die Funktion f beschreibt den Zu- ( f(x)>0 ) bzw. Abfluss ( f(x)<0 ) einer Wassermenge in Liter pro Minute in Abhängigkeit von der Zeit x in Minuten in ein Becken (Badewanne). Hat f also den Funktionswert f(5)= 10, so bedeutet dies, dass in der 5. Minute (besser in der 300. Sekunde) der Wasserhahn so geöffnet ist, dass er die Wassermenge von 10 Liter pro Minute liefert. Der Badende langweilt sich offenbar und verändert häufig, auch über längere Zeiträume, die Zufluss- bzw. die Abflussgeschwindigkeit f(x). Glücklicherweise nimmt er heute nur linear Änderungen vor.

Hierzu habe ich dann schon mal vier Funktionen aufgestellt:

f(x)= 2*x für [mm] 0\lex\le5 [/mm]
f(x)= 10 für [mm] 10 f(x)= -2,5*x+35 für [mm] 10 f(x)= [mm] \bruch{4}{3}*x-34 [/mm] für [mm] 18
Sind die denn richtig?

Nun Die weitere Aufgabe:

Wie viel Wasser ist nach 5; 10; 14 ; 18 und 25,5 Minuten in dem Becken?
Stellen sie eine Wertetabelle auf, die angibt wie viel Liter Wasser sich zu jeder vollen Minute im Becken befinden.

Dies müsste doch eigentlich z.B. für 5 Minuten 10 Liter sein. Es hat mich nur stutzig gemacht, dass viele aus meinem Kurs ein Ergebnis von 25 Litern o.ä. raus hatten. Habe ich meine Lösung denn falsch berechnet?

Weiter:

Stellen sie eine Gleichung einer (eventuell stückweise definierten) Funktion F auf, die die Wassermenge im Becken in Abhängigkeit von der Zeit x angibt.

Hierzu fälllt mir leider gar nichts ein.

Kann mir jemand bitte dabei helfen? Danke!

Gruß Lambda

        
Bezug
Lineare Funktion: Integration
Status: (Antwort) fertig Status 
Datum: 17:13 So 04.09.2005
Autor: MathePower

Hallo Lambda,

> Nun die Aufgabe:
>  
> Die Funktion f beschreibt den Zu- ( f(x)>0 ) bzw. Abfluss (
> f(x)<0 ) einer Wassermenge in Liter pro Minute in
> Abhängigkeit von der Zeit x in Minuten in ein Becken
> (Badewanne). Hat f also den Funktionswert f(5)= 10, so
> bedeutet dies, dass in der 5. Minute (besser in der 300.
> Sekunde) der Wasserhahn so geöffnet ist, dass er die
> Wassermenge von 10 Liter pro Minute liefert. Der Badende
> langweilt sich offenbar und verändert häufig, auch über
> längere Zeiträume, die Zufluss- bzw. die
> Abflussgeschwindigkeit f(x). Glücklicherweise nimmt er
> heute nur linear Änderungen vor.
>
> Hierzu habe ich dann schon mal vier Funktionen
> aufgestellt:
>  
> f(x)= 2*x für [mm]0\lex\le5[/mm]
>  f(x)= 10 für [mm]10
>  f(x)= -2,5*x+35 für [mm]10
>  f(x)= [mm]\bruch{4}{3}*x-34[/mm] für [mm]18
>
> Sind die denn richtig?

Muss das nicht so sein:

[mm] f\left( x \right)\;: = \;\left\{ {\begin{array}{*{20}c} {2\;x} \hfill & {0\; < \;x\; \leqslant \;5} \hfill \\ {10} \hfill & {5\; < \;x\; \leqslant \;10} \hfill \\ { - 2,5\;x\; + \;35} \hfill & {10\; < \;x\; \leqslant \;18} \hfill \\ {\frac{4} {3}\;x\; - \;34} \hfill & {18\; < \;x\; \leqslant \;25,5} \hfill \\ \end{array} } \right.[/mm]

Die Funktionen im Bereich [mm]10 \;<\;x\;\le\;18[/mm] und [mm]18\;<\;x\;\le\;25,5[/mm] scheinen nicht zu stimmen, da die Funktion f(x) an der Stelle [mm]x\;=18[/mm] unterschiedliche Funktionswerte aufweist.

>  
> Nun Die weitere Aufgabe:
>  
> Wie viel Wasser ist nach 5; 10; 14 ; 18 und 25,5 Minuten in
> dem Becken?
>  Stellen sie eine Wertetabelle auf, die angibt wie viel
> Liter Wasser sich zu jeder vollen Minute im Becken
> befinden.
>  
> Dies müsste doch eigentlich z.B. für 5 Minuten 10 Liter
> sein. Es hat mich nur stutzig gemacht, dass viele aus
> meinem Kurs ein Ergebnis von 25 Litern o.ä. raus hatten.
> Habe ich meine Lösung denn falsch berechnet?

Hier muss über den ganzen Bereich integriert werden:

[mm]F(5)\; = \;\int\limits_0^5 {2\;x} \;dx\; = \;\left[ {x^2 } \right]_0^5 \; = \;25[/mm]


>  
> Weiter:
>  
> Stellen sie eine Gleichung einer (eventuell stückweise
> definierten) Funktion F auf, die die Wassermenge im Becken
> in Abhängigkeit von der Zeit x angibt.
>  
> Hierzu fälllt mir leider gar nichts ein.

Siehe oben.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de