www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Lineare Funktionen
Lineare Funktionen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:36 Do 11.10.2007
Autor: LiliMa

Aufgabe
Bestimmen Sie die Gleichungen der Geraden.

[Dateianhang nicht öffentlich]

Hi Leute,

ich habe mit zwei der oben abgebildeten Geraden probleme. Und zwar mit der i und h. Ablesen kann ich nur den y-Achsenabschnitt bei i: c=0 und bei h: c=-2. Wie kann ich nun auch noch den Steigungsfaktor berechnen, wenn ich keine zwei Punkte hernehmen kann um die Geradengleichung zu bestimmen?

Danke schonmal.

Grüssle
Lilli

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Lineare Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Do 11.10.2007
Autor: Analytiker

Hi Lilli,

> ich habe mit zwei der oben abgebildeten Geraden probleme.
> Und zwar mit der i und h. Ablesen kann ich nur den
> y-Achsenabschnitt bei i: c=0 und bei h: c=-2. Wie kann ich
> nun auch noch den Steigungsfaktor berechnen, wenn ich keine
> zwei Punkte hernehmen kann um die Geradengleichung zu
> bestimmen?

Deine Y-Achsenabschnitte für i(x) und [/b]h(x)[/b] lese ich ebenfalls so ab. Da die Skizze (für mein Empfinden) relativ ungenau ist, gehe ich davon aus das man den zweiten Punkt der jeweiligen Funktion auch finden soll. Den sehen ich dann so:

i(x) geht durch [mm] P_{1}(0/0) [/mm] und [mm] P_{2}(-5/2) [/mm] und [mm] P_{3}(5/-2) [/mm]
h(x) geht durch [mm] P_{1}(0/-2) [/mm] und [mm] P_{2}(-5/-5) [/mm] und [mm] P_{3}(5/1) [/mm]

Somit hast du mehr als genug Punkte gegeben, um über die []Zweipunktform deine Funktionsgleichungen zu ermitteln. Für i(x) rechne ich dir das mal eben exemplarisch vor:

-> m = [mm] \bruch{y_{2} - y_{1}}{x_{2} - x_{1}} [/mm]

-> m = [mm] \bruch{-2 - 2}{5 + 5} [/mm] = [mm] -\bruch{4}{10} [/mm]

-> Und schon hast du den Steigungsfaktor m herausgefunden.

Liebe Grüße
Analytiker
[lehrer]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de