www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Lineare Gleichungen über Fp
Lineare Gleichungen über Fp < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Gleichungen über Fp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:53 Do 05.11.2009
Autor: jales

Aufgabe
Für welche Primzahlen p besitzt das LGS

[mm] \pmat{ 1 & 1 \\ 5 & -1 } [/mm] = [mm] \vektor{1 \\ 1} [/mm]

über dem Körper [mm] \IF_{p} [/mm] eine (beziehungsweise eine eindeutige) Lösung?

Hinweis : Über den Körper [mm] \IF_{p} [/mm] müssen Sie nur wissen, dass darin die Division durch alle ganzen Zahlen, welche nicht durch p teilbar sind, möglich ist. Lösen sie das LGS zunächst über dem Körper [mm] \IQ [/mm] und überlegen Sie dann, für welche Primzahlen p diese Rechnung genauso ausgeführt werden kann. Für die verbleibenden Primzahlen analysieren Sie die Situation seperat.  

Also das LGS über [mm] \IQ [/mm] habe ich bereits gelöst. Als Lösung erhalte ich hier [mm] x_{2} [/mm] = [mm] \bruch{2}{3} [/mm] und [mm] x_{1} [/mm] = [mm] \bruch{1}{3}. [/mm]

Wie schaffe ich nur den Übergang von [mm] \IQ [/mm] zu [mm] \IF_{p} [/mm] ?

"Überlegen Sie dann, für welche Primzahlen p diese Rechnungen genauso ausgeführt werden kann."

Dieser Satz ist mir nicht ganz klar. Soll ich überlegen, für welche Primzahlen p ich Teilen etc. kann, um das LGS eindeutig zu lösen, oder für welche andere Primzahlen man diese Matrix lösen könnte. Sprich wenn ich die Einser nun durch Fünfen austausche und die Fünf durch eine Sieben.

Komme nicht so ganz dahinter, was die Aufgabe von mir will.


Ich habe diese Frage in keinem anderen Forum auf anderen Internetseiten gestellt.

Liebe Grüße.

        
Bezug
Lineare Gleichungen über Fp: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Fr 06.11.2009
Autor: MathePower

Hallo jales,

> Für welche Primzahlen p besitzt das LGS
>
> [mm]\pmat{ 1 & 1 \\ 5 & -1 }[/mm] = [mm]\vektor{1 \\ 1}[/mm]
>  
> über dem Körper [mm]\IF_{p}[/mm] eine (beziehungsweise eine
> eindeutige) Lösung?
>
> Hinweis : Über den Körper [mm]\IF_{p}[/mm] müssen Sie nur wissen,
> dass darin die Division durch alle ganzen Zahlen, welche
> nicht durch p teilbar sind, möglich ist. Lösen sie das
> LGS zunächst über dem Körper [mm]\IQ[/mm] und überlegen Sie
> dann, für welche Primzahlen p diese Rechnung genauso
> ausgeführt werden kann. Für die verbleibenden Primzahlen
> analysieren Sie die Situation seperat.
> Also das LGS über [mm]\IQ[/mm] habe ich bereits gelöst. Als
> Lösung erhalte ich hier [mm]x_{2}[/mm] = [mm]\bruch{2}{3}[/mm] und [mm]x_{1}[/mm] =
> [mm]\bruch{1}{3}.[/mm]
>  
> Wie schaffe ich nur den Übergang von [mm]\IQ[/mm] zu [mm]\IF_{p}[/mm] ?
>
> "Überlegen Sie dann, für welche Primzahlen p diese
> Rechnungen genauso ausgeführt werden kann."
>  
> Dieser Satz ist mir nicht ganz klar. Soll ich überlegen,
> für welche Primzahlen p ich Teilen etc. kann, um das LGS
> eindeutig zu lösen, oder für welche andere Primzahlen man
> diese Matrix lösen könnte. Sprich wenn ich die Einser nun
> durch Fünfen austausche und die Fünf durch eine Sieben.
>
> Komme nicht so ganz dahinter, was die Aufgabe von mir will.
>


Das Gleichungssystem

[mm]A*x=b[/mm]

hat als Lösung

[mm]x=A^{-1}*b[/mm]

Dies gilt nur, wenn A ...  ist.

Über [mm]\IQ[/mm] ist dies nur der Fall, wenn A ein ... bezüglich [mm]\IQ[/mm] besitzt.

Was muß dann für A bezüglich [mm]\IF_{p}[/mm] gelten?


>
> Ich habe diese Frage in keinem anderen Forum auf anderen
> Internetseiten gestellt.
>
> Liebe Grüße.  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de