www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Lineare Gleichungssysteme
Lineare Gleichungssysteme < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Gleichungssysteme: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 00:07 Mo 03.10.2011
Autor: EtechProblem

Aufgabe
Bestimmen Sie die Menge aller Punkte, die in alles der folgenden Ebenen in [mm] \IR^3 [/mm] liegen, mit Hilfe des Gauß-Algorithmus:

[mm] E_{1} [/mm] = [mm] \{ \vec{x} \in \IR^3 | \vektor{15 \\ 2 \\ 22} *\vec{x} = -56 \} [/mm]
[mm] E_{2} [/mm] = [mm] \{ \vec{x} \in \IR^3 | \vektor{2 \\ 0 \\ 8} *\vec{x} = -8 \} [/mm]
[mm] E_{3} [/mm] = [mm] \{ \vec{x} \in \IR^3 | \vektor{7 \\ 1 \\ 9} *\vec{x} = -26 \} [/mm]
[mm] E_{1} [/mm] = [mm] \{ \vec{x} \in \IR^3 | \vektor{4 \\ 4\\ 11} *\vec{x} = -8 \} [/mm]




Abend Leute,

ich wollte euch um ein ansatz bitten. Ich weis wie der gauß algorithmus geht aber ich habe mir schon den kopf zerbrochen wie ich daraus eine Matrix bilden soll um sie dann mit Gauß lösen zu können.

Kann ich einfach den vektor und vec{x} ausmultiplizieren und dann jeweils drei gleichungen bilden mit -56 auf der rechten Seite? Oder Bilden ich daraus eine 3x4 matrix E= [mm] \pmat{ 15 & 2 & 22& -56\\ 2 & 0 & 8 &-8\\ 7&1&9&-26\\4&4&11&-8} [/mm]

Danke für die unterstützung

MfG

        
Bezug
Lineare Gleichungssysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 00:15 Mo 03.10.2011
Autor: Schadowmaster

nabend,

Hier ist ein kleines Problem in der Aufgabenstellung, denn wenn du zwei Vektoren addierst kommt keine Zahl raus.
Es ist also wahrscheinlich irgend eine Form des Skalarprodukts gemeint, also guck das nochmal nach.
Und das mit der Matrix passt nicht, denn du hast vier verschiedene Ebenen, die nichts miteinander zu tun haben und deshalb auch nicht in eine Matrix gehören.^^
Und wenn du dann das Produkt hast rechnest du es einfach aus und ermittelst die Bedingungen für x.

MfG

Schadowmaster

Bezug
                
Bezug
Lineare Gleichungssysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:24 Mo 03.10.2011
Autor: EtechProblem

ach ja da sollte * jedesmal da zwischen stehen sorry :) ist mir nicht aufgefallen beim abtippen. Dann würde es vermutlich klappen oder?

Bezug
                        
Bezug
Lineare Gleichungssysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 00:29 Mo 03.10.2011
Autor: Schadowmaster


> ach ja da sollte * jedesmal da zwischen stehen sorry :) ist
> mir nicht aufgefallen beim abtippen. Dann würde es
> vermutlich klappen oder?

jo, dann klappt das
Und ich seh grad, du sollst die Punkte berechnen die auf allen Ebenen liegen, dann stimmt sogar deine Matrix von oben. ;)

MfG

Schadow


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de