www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Lineare Interpolation
Lineare Interpolation < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Interpolation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Di 20.07.2010
Autor: techi

Aufgabe
Die Funktion f(x) = [mm] e^{2x} [/mm] liege als Tabelle für Argumente x vor, die ganze Zahlen sind. Bis zu welcher ganzen Zahl m können Zwischenwerte mittels linearer Interpolation berechnet werden, wenn ein absoluter Fehler [mm] \le [/mm] 0,05 erlaubt ist

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Die Frage hat uns bereits ziemliches Kopfzerbrechen bereitet. Niemand unserer Lerngruppe ist sich sicher, ob unser folgendes Vorgehen überhaupt richtig ist:

Formel Lineare Interpolation:

y = [mm] y_{0} [/mm] + [mm] \bruch{y_{1}-y_{0}}{x_{1}-x_{0}} [/mm] * (x - [mm] x_{0}) [/mm]

- Da die Exponentialfunktion mit größeren werten eben Exponential steigt, steigt auch der Fehler. Wir wählen also die Interpolationsgrenzen 0 und 1:

[mm] x_{0} [/mm] = 0 somit [mm] y_{0} [/mm] = 1
[mm] x_{1} [/mm] = 1 somit [mm] y_{1} [/mm] = [mm] e^{2} \approx [/mm] 7,389056099

Nun interpolieren wir den Wert 0,5 mit obiger Formel für lineare Interpolation:

y = 1 + [mm] (e^{2} [/mm] - 1) * 0,5 = 4,194828049

Also:

x = 0,5
[mm] y_{Interpoliert} [/mm] = 4,194828049
[mm] y_{Exakt} [/mm] = [mm] e^{1} \approx [/mm] 2,718281828

Relativer Fehler:

[mm] \bruch{Betrag(y_{Exakt} - y_{Interpoliert})}{y_{Exakt}} [/mm] = 0,54

Somit ist eine Interpolation nicht einmal in einem Schritt von 0,5 bei den Stützstellen 0 und 1 möglich. Daher ist eine Interpolation von ganzen Zahlen nicht möglich.

---

Wie würdet ihr diese Aufgabe lösen? Gibt es überhaupt eine Lösung?

        
Bezug
Lineare Interpolation: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 Mi 21.07.2010
Autor: wauwau

Bedenke folgende Angaben in deiner Aufgabe:

ganze Zahlen sind nicht immer positiv!!!
absoluter Fehler ist gemeint! (du hast rel. Fehler angeschaut das aber richtig und ändert das Ergebnis nicht wesentlich)
Daher sicherlich die triviale Lösung alle (negativen) ganzen Zahlen, wo [mm] $e^{2x} [/mm] < 0,5$ ist

Bezug
                
Bezug
Lineare Interpolation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:56 Mi 21.07.2010
Autor: techi

Wir haben das ganze nun mal von 0 bis -1 gerechnet und erhalten dort bei -0,5 einen absoluten Fehler von 0,5xxx.

Somit ist auch ein Interpolieren von negativen Zahlen nicht möglich. Sozusagen gibt es also keine Lösung der Aufgabe, bzw. als Lösung das ein Interpolieren bis zu keiner ganzen Zahl möglich ist?

Bezug
                        
Bezug
Lineare Interpolation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Mi 21.07.2010
Autor: Al-Chwarizmi

Hi techi ,


> Wir haben das ganze nun mal von 0 bis -1 gerechnet und
> erhalten dort bei -0,5 einen absoluten Fehler von 0,5xxx.

    das kann nicht sein !
  

> Somit ist auch ein Interpolieren von negativen Zahlen nicht
> möglich. Sozusagen gibt es also keine Lösung der Aufgabe,
> bzw. als Lösung das ein Interpolieren bis zu keiner ganzen
> Zahl möglich ist?

Nein. Ich weiß nicht, ob du die Aufgabe wirklich richtig ver-
standen hast. Hast du dir z.B. eine Zeichnung gemacht ?

Man vergleicht also die Kurve   $\ y\ =\ f(x)\ =\ [mm] e^{2*x}$ [/mm]

mit dem Streckenzug, der aus lauter Sehnen der Kurve
besteht, welche jeweils einen Punkt  $\ [mm] P_k(k\ [/mm] |\ f(k))$ mit dem
nächsten Punkt  $\ [mm] P_{k+1}(k+1\ [/mm] |\ f(k+1))$  verbinden.

Nun geht es zunächst darum, in einem einzelnen (aber beliebigen)
solchen Intervall  [k ... k+1]  die Stelle herauszufinden, an der
die Sehne am weitesten von der Kurve abweicht. Man kann
einen Term besimmen, der diese maximale Abweichung [mm] d_{max}(k) [/mm]
ausdrückt. In einem weiteren Schritt muss man dann prüfen,
für welche Werte von k die Ungleichung  [mm] d_{max}(k)<0.05 [/mm]  gilt.


LG    Al-Chwarizmi



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de