www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Lineare Interpolation
Lineare Interpolation < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Interpolation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:47 Fr 12.07.2013
Autor: apfelkeks

Aufgabe
Die jährliche Niederschlagsmenge sei etwa normalverteilt mit µ=747mm und sigma=155mm.
Wie hoch ist die Wahrscheinlichkeit dafür, dass in einem Jahr mehr als 780mm Niederschlag fällt?

Guten Abend miteinander :)

Zur obigen Aufgabe eine Frage. Um das zu berechnen muss ich ja Phi(x-µ/sigma) berechnen und dann linear interpolieren. Folgendes mach ich:

Phi(780-747/155)=33/155 (ca. 0,21203)

Aus der Tabelle der Verteilungsfunktion der Standardnormalverteilung:
Phi(0,3) = 0,61791
Phi(0,2) = 0,57926

Lineare Interpolation:
Phi(33/155) = Phi(0,2) + (33/155 - 0,2) * (Phi(0,3) - Phi(0,2)) = 0,5797587097

Ist das so richtig? Das widerspricht dem Script hier auf der Seite:
http://campus.uni-muenster.de/fileadmin/einrichtung/imib/lehre/skripte/biomathe/bio/script7.html

Das Script scheint z=0,2129 zu begrenzen und erhält dafür F(z)=0.584299, was deutlich von meinem Wert abweicht.

Ist mein Vorgehen falsch? Wie geht es richtig?

Riesiges Dankeschön für die Hilfe, ihr seid echt klasse :)!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Interpolation: Antwort
Status: (Antwort) fertig Status 
Datum: 01:37 Fr 12.07.2013
Autor: leduart

Hallo
in deiner Rechnung ist ein Fehler

> Lineare Interpolation:
>  Phi(33/155) = Phi(0,2) + (33/155 - 0,2) * (Phi(0,3) -
> Phi(0,2)) = 0,5797587097

richtig ist:
  Phi(33/155) = Phi(0,2) [mm] +\bruch{33/155 - 0,2}{0.3-0.2} [/mm] * (Phi(0,3) -  Phi(0,2)) = ...

Überschlag: der Unterschied  33/155 - 0,2 ist etwas größer als 1/10 des Abstand von 0.2 zu 0,3 ( grob 0,01) also ist auch der Unterschied der Phi etwa 1/10 von  dem Unterschied an den 2 Stellen. also ca 0,003
Gruss leduart

Bezug
        
Bezug
Lineare Interpolation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:29 Fr 12.07.2013
Autor: apfelkeks

Aufgabe 1
Wie hoch ist die Wahrscheinlichkeit dafür, dass in 2 aufeinanderfolgenden Jahren der Niederschlag mehr als 1560mm (=µ*2) beträgt? Welche Annahmen über die Niederschlagsmenge treffen Sie in (b)?

Aufgabe 2
Bestimmen Sie unter geeigneten Voraussetzungen das kleinste n, so dass die Wahrscheinlichkeit dafür, dass die gesamte Niederschlagsmenge in n aufeinanderfolgenden Jahren mehr als n*780mm überschreitet, maximal 5 % beträgt.

Vielen Dank für die Antwort!

Zu Aufgabe 1 habe ich zwei Ideen:
1) Die Normalverteilung "streckt" sich auf 2 Jahre und bleibt als angenährte Verteilung erhalten, dadurch verdoppeln sich die Parameter µ,sigma und der gesuchte Wert x. Als Phi würde wieder 33/155 rauskommen, was zur gleichen Wahrscheinlichkeit fürt.
2) Alternativ wäre für mich auch denkbar, dass die bereits berechnete Wahrscheinlichkeit für ein weiteres Jahr einfach mit sich selbst multipliziert werden muss, sprich 0,583125*0,583125=0,34003...

Zu Aufgabe 2 habe ich mir folgendes gedacht:
Gesucht wird die Anzahl an Jahren, ab dem die durchschnittliche Niederschlagsmenge 780mm mit einer Wahrscheinlichkeit <=0,05 überschritten wird. So verstehe ich die Frage, eine Lösung dazu kann ich mir gerade nicht wirklich denken. Hat das etwas mit der Ermittlugn von p-Quantilen zutun?

Viele Grüße
apfelkeks

Bezug
                
Bezug
Lineare Interpolation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 So 14.07.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de