www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Lineare Unabhängigkeit
Lineare Unabhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Unabhängigkeit: Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 12:06 Do 16.10.2014
Autor: MeMeansMe

Aufgabe
Seien [mm] $a_1,\ldots,a_n$ [/mm] verschiedene reelle Zahlen. Beweise, dass die Funktionen

[mm] $\bruch{1}{x-a_1}, \ldots, \bruch{1}{x-a_n}$ [/mm]

linear unabhängig sein.

Hallo,

zu dieser Aufgabe muss ich sagen, dass selbst ein anderer Mathematikdozent, mit dem wir solche Aufgaben manchmal anfangen zu lösen, keine Ahnung hatte, wie man hier ranzugehen hat. Nach meine Lösungsvorschlag, den ich hier vorstelle, hatte ich auch sozusagen einen Knoten im Kopf. Ich bin deshalb für jede Hilfe dankbar.

Damit man sagen kann, dass die Funktionen linear unabhängig sind, muss man zeigen, dass alle [mm] $z_i \in \IR$ [/mm] in der Gleichung

$ [mm] z_1*\bruch{1}{x-a_1} [/mm] + [mm] \ldots [/mm] + [mm] z_n*\bruch{1}{x-a_n} [/mm] = 0$

null ergeben müssen. Weil ich hier nur eine einzige Gleichung habe, habe ich beide Seiten der Gleichung abgeleitet, um eine zweite Gleichung zu erhalten, die da wäre:

$ [mm] (-z_1*\bruch{1}{(x-a_1)^2}) [/mm] + [mm] \ldots [/mm] + [mm] (-z_n*\bruch{1}{(x-a_n)}) [/mm] = 0$

Wenn ich jetzt die erste Gleichung mit [mm] $\bruch{1}{x-a_1}$ [/mm] multipliziere und zu der zweiten hinzu addiere, erhalte ich:

$ [mm] z_2*\bruch{(a_1-a_2)}{(x-a_1)(x-a_2)^2}+\ldots+z_n*\bruch{(a_1-a_n)}{(x-a_1)(x-a_n)^2} [/mm] = 0 $

Hiermit habe ich den erste Koeffizienten 'aus dem Kopf'. Diesen Prozess wende ich so lange an, bis ich nur noch den Term mit [mm] z_n [/mm] übrig habe. Ich weiß nicht, wie ich das genau aufschreiben muss, aber die Gleichung sähe dann im Prinzip so aus:

$ [mm] z_n*\bruch{\cdots}{\cdots} [/mm] = 0$

Hier gerne korrigieren, wie man sowas richtig aufschreibt. Aus dieser Gleichung folgt dann, dass [mm] $z_n [/mm] = 0$. Das kann ich in die Gleichung mit den Koeffizieten [mm] $z_n$ [/mm] und [mm] $z_{n-1}$ [/mm] einsetzen, woraus dann folgt, dass auch [mm] $z_{n-1} [/mm] = 0$ sein muss. Das mache ich so lange, bis ich bei der ursprünglichen Gleichung angelangt bin, woraus dann folgt, dass [mm] $z_1 [/mm] = [mm] \ldots [/mm] = [mm] z_n [/mm] = 0$.

Hiermit wäre dann bewiesen, dass die Funktionen linear unabhängig sind.

Vielen Dank an alle, die mir Feedback geben :)

Liebe Grüße.

        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Do 16.10.2014
Autor: fred97

Einfacher:

Sei [mm] D:=\IR \setminus \{a_1,...,a_n\}. [/mm]

Aus

$ [mm] z_1\cdot{}\bruch{1}{x-a_1} [/mm] + [mm] \ldots [/mm] + [mm] z_n\cdot{}\bruch{1}{x-a_n} [/mm] = 0 $

folgt nach Multiplikation mit [mm] x-a_1: [/mm]



(*) $ [mm] z_1+z_2*\bruch{x-a_1}{x-a_2} \ldots [/mm] + [mm] z_n\cdot{}\bruch{x-a_1}{x-a_n} [/mm] = 0 $

(*) gilt für alle $x [mm] \in [/mm] D$. Der Grenzübergang $x [mm] \to a_1$ [/mm] liefert sofort: [mm] z_1=0. [/mm]

Es bleibt also:

   $ [mm] z_2\cdot{}\bruch{1}{x-a_2} [/mm] + [mm] \ldots [/mm] + [mm] z_n\cdot{}\bruch{1}{x-a_n} [/mm] = 0 $

Wiederhole obigen Schritt, um zu sehen: [mm] z_2=0. [/mm] Etc ... .

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de