www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Lineare Unabhängigkeit
Lineare Unabhängigkeit < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 So 13.05.2007
Autor: Chris25

Aufgabe
[mm] a^1 [/mm] =     [mm] \begin{pmatrix} 1 \\ 2 \end{pmatrix} [/mm]

[mm] a^2 [/mm] =    [mm] \begin{pmatrix} 3 \\ 1 \end{pmatrix} [/mm]

ist linear unabhängig?

Hallo, schon wieder ich,

Diesmal geht es wie schon oben erwähnt um die lineare Unabhängigkeit. Im Grunde genommen habe ich verstanden das Vektoren linear unabhängig voneinander sind wenn ein Nullvektor nur durch eine Linearkombination erzeugbar ist, wenn alle Koeffizienten 0 sind.

Bei oben genannter Aufgabe ging ich dann wie folgt vor:

[mm] \begin{pmatrix} r + 3s \\ 2r + s \end{pmatrix} [/mm]   = [mm] \begin{pmatrix} 0 \\ 0 \end{pmatrix} [/mm]

------------------------------------------------------------------------------------------

r + 3s = 0

2r + s = 0

-------------------------------------------------------------------------------------------

r = -3s

-------------------------------------------------------------------------------------------

2(-3s) + s = 0

-------------------------------------------------------------------------------------------

Mein Dozent schließt jetzt daraus, dass r = 0 und s = 0 also linear unabhängig.

Das kann ich nicht verstehenm da ich wie folgt weiter rechnen würde:

-5s =0

s = 5

--------------------------------------------------------------------------------------------

r + 15 = 0

r = -15

--------------------------------------------------------------------------------------------

und da ja:

r + 3s = 0

setzte ich ein:

-15 +15 = 0

also linear abhängig.

Wo ist denn mein Denkfehler bzw. was hab ich nicht richtig verstanden?

Ausserdem hätte ich noch die Frage, ob man die Anzahl der Komponenten eines Vektors als Ordnung bezeichnet, da es ja heißt, das Vektoren linear abhängig sind, wenn die Anzahl der Vektoren größer ist, als die Ordnung der Vektoren.

Danke im Voraus...

Gruß Chris

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 So 13.05.2007
Autor: schachuzipus

Hallo Christian,

> [mm]a^1[/mm] =     [mm]\begin{pmatrix} 1 \\ 2 \end{pmatrix}[/mm]
>  
> [mm]a^2[/mm] =    [mm]\begin{pmatrix} 3 \\ 1 \end{pmatrix}[/mm]
>  
> ist linear unabhängig?
>
> Hallo, schon wieder ich,
>  
> Diesmal geht es wie schon oben erwähnt um die lineare
> Unabhängigkeit. Im Grunde genommen habe ich verstanden das
> Vektoren linear unabhängig voneinander sind wenn ein
> Nullvektor nur durch eine Linearkombination erzeugbar ist,
> wenn alle Koeffizienten 0 sind.
>  
> Bei oben genannter Aufgabe ging ich dann wie folgt vor:
>  
> [mm]\begin{pmatrix} r + 3s \\ 2r + s \end{pmatrix}[/mm]   =
> [mm]\begin{pmatrix} 0 \\ 0 \end{pmatrix}[/mm]
>  
> ------------------------------------------------------------------------------------------
>  
> r + 3s = 0
>  
> 2r + s = 0
>  
> -------------------------------------------------------------------------------------------
>  
> r = -3s
>  
> -------------------------------------------------------------------------------------------
>  
> 2(-3s) + s = 0
>  
> -------------------------------------------------------------------------------------------
>  
> Mein Dozent schließt jetzt daraus, dass r = 0 und s = 0
> also linear unabhängig.

Da hat er recht ;-)

>  
> Das kann ich nicht verstehenm da ich wie folgt weiter
> rechnen würde:
>  
> -5s =0
>  
> s = 5 [kopfkratz3]

Hier stimmt aber was nicht. Da steht ein "MAL" dazwischen ;-)

Also [mm] $-5\red{\cdot{}}s=0$ [/mm] Hier durch $-5$ teilen, ergibt $s=0$


Zu der anderen Frage: den Begriff Ordnung eines Vektors kenne ich nicht, aber was du geschrieben hast, stimmt.
Mir ist das eher geläufig unter dem Begriff "Dimension", aber es läuft im Prinzip auf dasselbe hinaus


Gruß


schachuzipus




Bezug
                
Bezug
Lineare Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:52 So 13.05.2007
Autor: Chris25

Oh Mann,

so doof kann auch wieder nur ich sein.

Vielen Dank, du hast mir sehr geholfen.

Gruß Chris

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de