www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Lineare Unabhängikeit von Vekt
Lineare Unabhängikeit von Vekt < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Unabhängikeit von Vekt: Frage
Status: (Frage) beantwortet Status 
Datum: 21:55 So 21.11.2004
Autor: Jani

Hallo! Hab eine ganz simple Frage eigentlich:
wenn jemand sagt 2 Vektoren sind linear unabhängig voneinander, heisst das die sind dann kollinear oder nicht kollinear?  (versteh also den Begriff nicht so ganz)
und wenn ich drei vektoren (mit je drei komponenten) habe, wie kann ich da am besten und vor allem am schnellsten nachschauen, ob sie linear unabhängig sind?
Danke !

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Lineare Unabhängikeit von Vekt: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 So 21.11.2004
Autor: Lifthrasirr

Also soweit ich mich erinnern kann, sind 2 Vektoren genau dann linear abhängig, wenn sie parallel liegen.
Wenn dies der Fall ist, dann sind sie kollinear. 2 linear abhängige Vektoren sind also kollinear. Wenn sie linear unabhängig sind, müssen sie dann nicht kollinear genannt werden.
Drei Vektoren sind dann linear abhängig, wenn sie in einer Ebene liegen.

Bei Vektoren im R³ kann man auf lineare Abhängigkeit untersuchen, indem man die Determinante bestimmt.
Das funktioniert folgendermaßen:

Wir nehmen z.b. die drei Vektoren
r1 = (-1, -1, 2); r2 = (-1, 2, -1) und r3 = (2, -3, 2)
und schreiben sie in eine Art Matrix.

Die Determinante bestimmt sich nun..
[mm] \vmat{ -1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -3 & 2} \vmat{ -1 & -1 \\ -1 & 2 \\ 2 & -3 } [/mm]
Der zweite Kasten beinhaltet zur Hilfestellung nur die ersten beiden Spalten der eigentlichen Matrix.

Jetzt musst du die Produkte der Hauptdiagonalen miteinander addieren.
Die Hauptdiagonalen sind die von links oben nach rechts unten.

Das Ergebnis ist (-1)*2*2 + (-1)*(-1)*2 + 2*(-1)*(-3) = -4 +2 + 6 = 4

Davon muss dann die Summe der Produkte der Nebendiagonalen abgezogen werden.
Die Nebendiagonalen sind die von rechts oben nach links unten (angefangen bei der Zahl rechts oben im 2. "Hilfskasten")

Die Summe der Nebendiagonalen lautet also:
(-1)*(-1)*2 + (-1)*(-1)*(-3) + 2*2*2 = 2 - 3 + 8 = 7

Die Summe der Hauptdiagonalen minus der Summe der Nebendiagonalen beträgt also 4 - 7 = -3

Da -3 ungleich 0 ist, sind die Vektoren linear unabhängig. Linear abhängig sind sie nur, wenn das Ergebnis 0 ist.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de