www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Lineares Gleichungssystem
Lineares Gleichungssystem < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineares Gleichungssystem: Lineares Gleichungs.
Status: (Frage) beantwortet Status 
Datum: 11:30 Sa 25.11.2006
Autor: banshee2006

Aufgabe
Von einer stehenden Welle f [mm] \in [/mm]
[mm] C^{1} [/mm] ( [mm] \IR [/mm] ) sei folgendes bekannt:

Sie ist eine Linearkombination der Einzelschwingungen sinx, cosx, sin(2x), cos(2x).

Sie hat am Ort x = 0 stets den lokal maximalen Wert 2 und bei x = [mm] \bruch{\pi}{2} [/mm] den lokal minimalen Wert -3.

Bestimmen sie f.

-  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

Hab obenstehende Aufgabe zu lösen, aber kann mir nichts darunter vorstellen.
Daher ist meine Frage, welche Schritte man nacheinander abarbeiten muss.

Über schnelle Hilfe wäre ich sehr dankbar!!!

MfG Thorsten

        
Bezug
Lineares Gleichungssystem: Lösungsweg
Status: (Antwort) fertig Status 
Datum: 12:25 Sa 25.11.2006
Autor: Chlors

Hallo,
du weißt das deine gesuchte Funktion eine Linearkombination von sin(x), cos(x), sin (2x)  und cos(2x) ist, d.h. deine Funktion sieht folgendermaßen aus:
f(x)=a*cos(x)+b*sin(x)+c*sin(2x)+d*cos(2x)
Dein Ziel ist es nun die vier Unbekannten a,b,c,d zu bestimmen. Dafür benötigst du vier Gleichungen, da du sonst keine genaue Lösung bekommst.
Zwei Gleichungen bekommst du, indem du f(0)=2 und [mm] f(\pi/2)=-3 [/mm] aufstellst.
Die anderen zwei Gleichungen bekommst du, indem du die Infos über Maximum bzw. Minimum verwendest, d.h. f'(0)=0 und [mm] f'(\pi/2)=0 [/mm] muss gelten.Wenn du diese vier Gleichungen aufgestellt hast, bekommst du Bedingungen für a,b,c,d , die du so umformen kannst, dass du ne Lösung erhälst.
Zur Kontrolle: Die Lösung ist a=-1/2 =b , c=1/4 und d=2,5 .
Ich hoffe, dass du damit die Aufgabe lösen kannst, ansonsten frag halt nochmal :)
Liebe Grüße, Conny.


Bezug
                
Bezug
Lineares Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 Sa 25.11.2006
Autor: banshee2006

Hi Conny,

Die Hilfe kam aber schnell! ;-)
Hab's verstanden.
War ja gar nicht so kompliziert... aber man muss erst mal drauf kommen.

DANKESCHÖN!!!

Liebe Grüße

Thorsten


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de