www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Lineares Gleichungssystem
Lineares Gleichungssystem < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineares Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 Di 16.01.2007
Autor: mathe-tu-muenchen

Aufgabe
Gegeben ist folgendes Gleichungssystem:

A = [mm] \begin{pmatrix} 1 & 2 & -3 \\ 2 & 1 & -6 \\ a & -2 & 3 \end{pmatrix} [/mm]

b = [mm] \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} [/mm]

a) Für welche Werte von a gibt es eine eindeutige Lösung?
b) Gibt es einen Wert für a, für den das Glg.-Sys keine Lösung hat?

Hallo!

Ich bin mir hierbei leider nicht ganz sicher.

ad a) Also zuerstmal die Determinante von A berechnen, was soviel ergibt, dass die Determinante von A Null ist wenn a = -1 (und somit ist rg(A) < 3)

Habe das auch mit Maxima(Matheprogramm) nachgerechnet und es stimmt.

Es gibt eine eindeutige Lösung für alle Werte ungleich -1.

ad b) Wenn ich jetzt z.B. für a = 1 einsetzte, dann ist der erste Vektor der Matrix und b linear abhängig. Der Rang von A ist aber trotzdem drei und der Rang von A|b ist auch drei? Also ist hier auch die Lösung -1 ?

Danke!



        
Bezug
Lineares Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 Di 16.01.2007
Autor: thoma2

zu a)
was heisst den, wen  detA=0?
dazu kannst du dir auch die erste und letzte zeile anschauen
wen du bei der betrachtung vek.b mit einbeziehst, kannst du auch direkt b) lössen.





Bezug
                
Bezug
Lineares Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 Di 16.01.2007
Autor: mathe-tu-muenchen

detA = 0 bedeutet, dass der Rang ungleich drei ist!?

Also ein homogenes Gleichungssystem mit detA ungleich Null hat eine eindeutige Lösung.

Hm aber wie ich den b Vektor miteinbeziehen soll, weiß ich noch nicht. Vielleicht einen Spaltenvektor von A mit b vertauschen und dann überprüfen bei welchem a die Determinante Null ist?

Bezug
                        
Bezug
Lineares Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:11 Di 16.01.2007
Autor: thoma2

du denkst zu kompliziert.
schau dir mal ein gauss mit (A|b) an und setzt a = -1
und versuch ihn auf obere dreieckgestallt zu bringen.


Bezug
                                
Bezug
Lineares Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:30 Di 16.01.2007
Autor: mathe-tu-muenchen

Das ergibt einen Widerspruch. Also ist für a = -1 das Gleichungssystem nicht lösbar.

Bezug
                                        
Bezug
Lineares Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:36 Di 16.01.2007
Autor: thoma2

genau. deswegen ist detA=0 für a=-1
daher gibt es für a=-1 keine lösung
da [mm] 0\not=2 [/mm] ist



Bezug
                                                
Bezug
Lineares Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:44 Mi 17.01.2007
Autor: mathe-tu-muenchen

Achja jetzt ist es mir klar, also wenn detA = 0 dann hat das Gleichungssystem keine oder eine mehrdeutige Lösung, also muss ich für den Wert a = -1 untersuchen welche der beiden Lösbarkeitsarten zutrifft.

Oder ich sehe, dass der Vektor b zu allen Vektoren der Matrix A für den Wert a= -1 linear unabhängig ist, somit ist rg(A) = 2 < rg(A|b) = 3 -> unlösbar.

Danke für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de