www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Lineares Gleichungssystem über Z/5Z
Lineares Gleichungssystem über Z/5Z < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineares Gleichungssystem über Z/5Z: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Fr 14.05.2004
Autor: nevinpol

Hallo an Alle,
dies ist die Aufgabe die ich schon gelöst habe, denke ich.
[anbet][anbet][anbet]
Vielleicht kann ja jemand mal ein Blick drüber werfen und
eventuelle grundlegenge Fehler entdecken???
[anbet][anbet][anbet]

Aufgabe A)Lösen Sie das lineare Gleichungsystem
[mm]\bar 1 \cdot\ x + \bar 2 \cdot\ y = \bar 4[/mm]
[mm]\bar 2 \cdot\ x + \bar 7 \cdot\ y = \bar 1\bar 1[/mm] über [mm] \IZ / 5 \IZ .[/mm]

[b]Meine Lösung zu Aufgabe [mm] A):[\b] [/mm]
(1)[mm]\bar 1 \cdot\ x + \bar 2 \cdot\ y = \bar 4[/mm]
(2)[mm]\bar 2 \cdot\ x + \bar 7 \cdot\ y = \bar 1\bar 1[/mm]

(1)[mm]\bar 1 \cdot\ x + \bar 2 \cdot\ y = \bar 4 [/mm]
[mm]\gdw[/mm](3) [mm]\bar 1 \cdot\ x + \bar 7 \cdot\ y = \bar 4 [/mm]

(2) - (3) = (4): [mm]\bar 1 \cdot\ x= \bar 7 [/mm]

[mm]\bar 1 \cdot\ x= \bar 7 [/mm] einsetzen in (2):

(2) [mm]\bar 2 \cdot\ x + \bar 7 \cdot\ y = \bar 1\bar 1[/mm]
[mm]\gdw[/mm] [mm]\bar 2 \cdot\ \bar 7 + \bar 7 \cdot\ y = \bar 1\bar 1[/mm]
[mm]\gdw[/mm] [mm]\bar 1\bar4 + \bar 7 \cdot\ y = \bar 1\bar 1[/mm]
[mm]\gdw[/mm] [mm]\bar 7 \cdot\ y = \bar 2\bar 5[/mm]
[mm]\gdw[/mm] [mm]\bar 2 \cdot\ y = \bar 1\bar 0[/mm]
[mm]\gdw[/mm] [mm] y = \bar 5[/mm]
[mm]\gdw[/mm] [mm] y = \bar 0[/mm]

Also [mm] x = \bar 7 = \bar2[/mm] und [mm]y = \bar 0 [/mm]

[mm] L = \{ \bar2 , \bar0 \} [/mm]


Grüsse
nevinpol

        
Bezug
Lineares Gleichungssystem über Z/5Z: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Sa 15.05.2004
Autor: Marc

Hallo nevinpol,

>  Vielleicht kann ja jemand mal ein Blick drüber werfen und
>
> eventuelle grundlegenge Fehler entdecken???

Ich muß sagen, das sieht schon sehr gut aus :-)
  

> Aufgabe A)Lösen Sie das lineare Gleichungsystem
>  [mm]\bar 1 \cdot\ x + \bar 2 \cdot\ y = \bar 4[/mm]
>  [mm]\bar 2 \cdot\ x + \bar 7 \cdot\ y = \bar 1\bar 1[/mm] über [mm]\IZ / 5 \IZ .[/mm]
>  
> Meine Lösung zu Aufgabe [mm] A):[\b] [/mm]
> (1)[mm]\bar 1 \cdot\ x + \bar 2 \cdot\ y = \bar 4[/mm]
> (2)[mm]\bar 2 \cdot\ x + \bar 7 \cdot\ y = \bar 1\bar 1[/mm]
>
> (1)[mm]\bar 1 \cdot\ x + \bar 2 \cdot\ y = \bar 4 [/mm]
> [mm]\gdw[/mm](3) [mm]\bar 1 \cdot\ x + \bar 7 \cdot\ y = \bar 4 [/mm]

Hier hätte ich evtl. in der 2. Gleichung direkt die Äquivalenz von [mm] $\bar7=\bar2$ [/mm] ausgenutzt: [mm] $\bar [/mm] 2 [mm] \cdot\ [/mm] x + [mm] \bar [/mm] 2 [mm] \cdot\ [/mm] y = [mm] \bar 1\bar [/mm] 1$ und dann subtrahiert, aber hat nur ästhetische Bedeutung.

> (2) - (3) = (4): [mm]\bar 1 \cdot\ x= \bar 7 [/mm]
>
> [mm]\bar 1 \cdot\ x= \bar 7 [/mm] einsetzen in (2):
>
> (2) [mm]\bar 2 \cdot\ x + \bar 7 \cdot\ y = \bar 1\bar 1[/mm]
> [mm]\gdw[/mm] [mm]\bar 2 \cdot\ \bar 7 + \bar 7 \cdot\ y = \bar 1\bar 1[/mm]
> [mm]\gdw[/mm] [mm]\bar 1\bar4 + \bar 7 \cdot\ y = \bar 1\bar 1[/mm]
> [mm]\gdw[/mm] [mm]\bar 7 \cdot\ y = \bar 2\bar 5[/mm]

Das verstehe ich nicht ganz; wie kommst du auf [mm] \overline{25} [/mm] auf der rechten Seite? Da hast du offenbar plus gerechnet.
Stattdessen würde ich die [mm] $\overline{14}$ [/mm] ersetzen durch [mm] $\bar [/mm] 4$ und dann subtrahieren (die [mm] $\bar7$ [/mm] ersetze ich auch):

[mm] $\gdw\bar [/mm] 2 [mm] \cdot\ [/mm] y = [mm] \bar [/mm] 2$
[mm] $\gdw\bar [/mm] y = [mm] \bar [/mm] 1$

> [mm]\gdw[/mm] [mm]\bar 2 \cdot\ y = \bar 1\bar 0[/mm]
> [mm]\gdw[/mm] [mm]y = \bar 5[/mm]
> [mm]\gdw[/mm] [mm]y = \bar 0[/mm]
>
> Also [mm]x = \bar 7 = \bar2[/mm] und [mm]y = \bar 0 [/mm]
>
> [mm]L = \{ \bar2 , \bar0 \} [/mm]

Beim bloßen Anblick der Lösungsmenge würde ich jetzt denken, es gäbe zwei Lösungen, in Wirklichkeit gibt es natürlich nur die eine Lösung [mm] $(\bar2,\bar1)$: [/mm]
[mm] $\IL=\{ \red{(}\bar2,\bar1\red{)} \}$ [/mm]

Fazit: Du hast alles verstanden und nur einen Flüchtigkeitsfehler und einen formalen "Fehler" gemacht.

Well done!

Marc.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de