Lineares Gleichungssystem über Z/5Z < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
|
Status: |
(Antwort) fertig | Datum: | 16:15 Sa 15.05.2004 | Autor: | Marc |
Hallo nevinpol,
> Vielleicht kann ja jemand mal ein Blick drüber werfen und
>
> eventuelle grundlegenge Fehler entdecken???
Ich muß sagen, das sieht schon sehr gut aus
> Aufgabe A)Lösen Sie das lineare Gleichungsystem
> [mm]\bar 1 \cdot\ x + \bar 2 \cdot\ y = \bar 4[/mm]
> [mm]\bar 2 \cdot\ x + \bar 7 \cdot\ y = \bar 1\bar 1[/mm] über [mm]\IZ / 5 \IZ .[/mm]
>
> Meine Lösung zu Aufgabe [mm] A):[\b]
[/mm]
> (1)[mm]\bar 1 \cdot\ x + \bar 2 \cdot\ y = \bar 4[/mm]
> (2)[mm]\bar 2 \cdot\ x + \bar 7 \cdot\ y = \bar 1\bar 1[/mm]
>
> (1)[mm]\bar 1 \cdot\ x + \bar 2 \cdot\ y = \bar 4 [/mm]
> [mm]\gdw[/mm](3) [mm]\bar 1 \cdot\ x + \bar 7 \cdot\ y = \bar 4 [/mm]
Hier hätte ich evtl. in der 2. Gleichung direkt die Äquivalenz von [mm] $\bar7=\bar2$ [/mm] ausgenutzt: [mm] $\bar [/mm] 2 [mm] \cdot\ [/mm] x + [mm] \bar [/mm] 2 [mm] \cdot\ [/mm] y = [mm] \bar 1\bar [/mm] 1$ und dann subtrahiert, aber hat nur ästhetische Bedeutung.
> (2) - (3) = (4): [mm]\bar 1 \cdot\ x= \bar 7 [/mm]
>
> [mm]\bar 1 \cdot\ x= \bar 7 [/mm] einsetzen in (2):
>
> (2) [mm]\bar 2 \cdot\ x + \bar 7 \cdot\ y = \bar 1\bar 1[/mm]
> [mm]\gdw[/mm] [mm]\bar 2 \cdot\ \bar 7 + \bar 7 \cdot\ y = \bar 1\bar 1[/mm]
> [mm]\gdw[/mm] [mm]\bar 1\bar4 + \bar 7 \cdot\ y = \bar 1\bar 1[/mm]
> [mm]\gdw[/mm] [mm]\bar 7 \cdot\ y = \bar 2\bar 5[/mm]
Das verstehe ich nicht ganz; wie kommst du auf [mm] \overline{25} [/mm] auf der rechten Seite? Da hast du offenbar plus gerechnet.
Stattdessen würde ich die [mm] $\overline{14}$ [/mm] ersetzen durch [mm] $\bar [/mm] 4$ und dann subtrahieren (die [mm] $\bar7$ [/mm] ersetze ich auch):
[mm] $\gdw\bar [/mm] 2 [mm] \cdot\ [/mm] y = [mm] \bar [/mm] 2$
[mm] $\gdw\bar [/mm] y = [mm] \bar [/mm] 1$
> [mm]\gdw[/mm] [mm]\bar 2 \cdot\ y = \bar 1\bar 0[/mm]
> [mm]\gdw[/mm] [mm]y = \bar 5[/mm]
> [mm]\gdw[/mm] [mm]y = \bar 0[/mm]
>
> Also [mm]x = \bar 7 = \bar2[/mm] und [mm]y = \bar 0 [/mm]
>
> [mm]L = \{ \bar2 , \bar0 \} [/mm]
Beim bloßen Anblick der Lösungsmenge würde ich jetzt denken, es gäbe zwei Lösungen, in Wirklichkeit gibt es natürlich nur die eine Lösung [mm] $(\bar2,\bar1)$:
[/mm]
[mm] $\IL=\{ \red{(}\bar2,\bar1\red{)} \}$
[/mm]
Fazit: Du hast alles verstanden und nur einen Flüchtigkeitsfehler und einen formalen "Fehler" gemacht.
Well done!
Marc.
|
|
|
|